Lephisto/src/star_system.cpp
Allanis 56f5411516 [Add] Some Hyperspace range stuff.
[Add] SectorMap indicates current ship location.
2017-11-13 20:59:38 +00:00

454 lines
14 KiB
C++

#include "star_system.h"
#include "sector.h"
#define CELSIUS 273.15
/* Indexed by enum subtype. */
float StarSystem::starColors[7][3] = {
{ 1.0, 0.2, 0.0 }, /* M */
{ 1.0, 0.6, 0.1 }, /* K */
{ 1.0, 1.0, 0.4 }, /* G */
{ 1.0, 1.0, 0.8 }, /* F */
{ 1.0, 1.0, 1.0 }, /* A */
{ 0.7, 0.7, 1.0 }, /* B */
{ 1.0, 0.7, 1.0 } /* O */
};
static const struct SBodySubTypeInfo {
float mass;
float radius;
const char *description;
const char *icon;
float tempMin, tempMax;
} subTypeInfo[StarSystem::SBody::SUBTYPE_MAX] = {
{
0.4, 0.5, "Type 'M' red star",
"icons/object_star_m.png",
2000, 3500
},
{
0.8, 0.9, "Type 'K' orange star",
"icons/object_star_k.png",
3500, 5000
},
{
1.1, 1.1, "Type 'G' yellow star",
"icons/object_star_g.png",
5000, 6000
},
{
1.7, 1.4, "Type 'F' white star",
"icons/object_star_f.png",
6000, 7500
},
{
3.1, 2.1, "Type 'A' hot white star",
"icons/object_star_a.png",
7500, 10000
},
{
18.0, 7.0, "Bright type 'B' blue star",
"icons/object_star_b.png",
10000, 30000
},
{
64.0, 16.0, "Hot, massive type 'O' blue star",
"icons/object_star_o.png",
30000, 60000
},
{
0, 0, "Brown dwarf sub-stellar object",
"icons/object_brown_dwarf.png"
},
{
0, 0, "Small gas giant",
"icons/object_planet_small_gas_giant.png"
},
{
0, 0, "Medium gas giant",
"icons/object_planet_medium_gas_giant.png"
},
{
0, 0, "Large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
0, 0, "Very large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
0, 0, "Small, rocky dwarf planet",
"icons/object_planet_dwarf.png"
},
{
0, 0, "Small, rocky planet with a thin atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with liquid water and a nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with a carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with a methane atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with running water and a thick nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with a thick carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Rocky planet with a thick methane atmosphere",
"icons/object_planet_small.png"
},
{
0, 0, "Highly volcanic world",
"icons/object_planet_small.png"
},
{
0, 0, "World with indigenous life and an oxygen atmosphere",
"icons/object_planet_life.png"
}
};
const char* StarSystem::SBody::GetAstroDescription(void) {
return subTypeInfo[subtype].description;
}
const char* StarSystem::SBody::GetIcon(void) {
return subTypeInfo[subtype].icon;
}
static const double boltzman_const = 5.6704e-8;
static double calcEnergyPerUnitAreaAtDist(double star_radius, double star_temp,
double object_dist) {
const double total_solar_emission = boltzman_const * pow(star_temp, 4) *
4*M_PI*star_radius*star_radius;
return total_solar_emission / (4*M_PI*object_dist*object_dist);
}
/* Bond albedo, not geometric. */
static double calcSurfaceTemp(double star_radius, double star_temp,
double object_dist, double albedo,
double greenhouse) {
const double energy_per_meter2 = calcEnergyPerUnitAreaAtDist(star_radius, star_temp,
object_dist);
const double surface_temp = pow(energy_per_meter2*(1-albedo)/(4*(1-greenhouse)*boltzman_const), 0.25);
return surface_temp;
}
void StarSystem::Orbit::KeplerPosAtTime(double t, double* dist, double* ang) {
double e = eccentricity;
double a = semiMajorAxis;
/* Mean anomaly. */
double M = 2*M_PI*t / period;
/* Eccentic anomaly. */
double E = M + (e - (1/8.0)*e*e*e)*sin(M) +
(1/2.0)*e*e*sin(2*M) +
(3/8.0)*e*e*e*sin(3*M);
/* True anomaly (angle of orbit position). */
double v = 2*atan(sqrt((1+e)/(1-e)) * tan(E/2.0));
/* Heliocentric distance. */
double r = a * (1 - e*e) / (1 + e*cos(v));
*ang = v;
*dist = r;
}
vector3d StarSystem::Orbit::CartesianPosAtTime(double t) {
double dist, ang;
KeplerPosAtTime(t, &dist, &ang);
vector3d pos = vector3d(cos(ang)*dist, sin(ang)*dist, 0);
pos = rotMatrix * pos;
return pos;
}
static std::vector<float>* AccreteDisc(int size, float density, MTRand& rand) {
std::vector<float>* disc = new std::vector<float>();
for(int i = 0; i < size; i++) {
disc->push_back(density*rand(1.0));
}
for(int iter = 0; iter < 20; iter++) {
for(int i = 0; i < (signed)disc->size(); i++) {
for(int d = ceil(sqrtf((*disc)[i])+(i/5)); d > 0; d--) {
if((i+d < (signed)disc->size()) && ((*disc)[i] > (*disc)[i+d])) {
(*disc)[i] += (*disc)[i+d];
(*disc)[i+d] = 0;
}
if(((i-d) >= 0) && ((*disc)[i] > (*disc)[i-d])) {
(*disc)[i] += (*disc)[i-d];
(*disc)[i-d] = 0;
}
}
}
}
return disc;
}
double calc_orbital_period(double semiMajorAxis, double centralMass) {
return 2.0*M_PI*sqrtf((semiMajorAxis*semiMajorAxis*semiMajorAxis)/(G*centralMass));
}
void StarSystem::SBody::EliminateBadChildren(void) {
/* Check for overlapping & unacceptably close orbits. Merge planets. */
for (std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
if((*i)->temp) continue;
for(std::vector<SBody*>::iterator j = children.begin(); j != children.end(); ++j) {
if((*j) == (*i)) continue;
/* Don't eat anything bigger than self. */
if((*j)->mass > (*i)->mass) continue;
double i_min = (*i)->radMin;
double i_max = (*i)->radMax;
double j_min = (*j)->radMin;
double j_max = (*j)->radMax;
bool eat = false;
if((*i)->orbit.semiMajorAxis > (*j)->orbit.semiMajorAxis) {
if(i_min < j_max*1.2) eat = true;
} else {
if(i_max > j_min*0.8) eat = true;
}
if(eat) {
(*i)->mass += (*j)->mass;
(*j)->temp = 1;
}
}
}
/* Kill the eaten ones. */
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end();) {
if((*i)->temp) {
i = children.erase(i);
}
else i++;
}
}
StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
unsigned long _init[3] = { system_idx, sector_x, sector_y };
loc.secX = sector_x;
loc.secY = sector_y;
loc.sysIdx = system_idx;
rootBody = 0;
if(system_idx == -1) return;
rand.seed(_init, 3);
Sector s = Sector(sector_x, sector_y);
/* Primary. */
SBody* primary = new SBody;
StarSystem::SBody::SubType subtype = s.m_systems[system_idx].primaryStarClass;
primary->subtype = subtype;
primary->parent = NULL;
primary->radius = SOL_RADIUS*subTypeInfo[subtype].radius;
primary->mass = SOL_MASS*subTypeInfo[subtype].mass;
primary->type = SBody::TYPE_STAR;
primary->averageTemp = rand((int)subTypeInfo[subtype].tempMin,
(int)subTypeInfo[subtype].tempMax);
rootBody = primary;
int disc_size = rand(6, 100) + rand(60,140)*primary->subtype*primary->subtype;
//printf("disc_size %.1fAU\n", disc_size/10.0);
std::vector<float>* disc = AccreteDisc(disc_size, 0.1+rand(1.5), rand);
for(unsigned int i = 0; i < disc->size(); i++) {
float mass = (*disc)[i];
if(mass == 0) continue;
SBody* planet = new SBody;
planet->subtype = SBody::SUBTYPE_PLANET_DWARF;
planet->temp = 0;
planet->parent = primary;
planet->radius = EARTH_RADIUS;
planet->mass = mass * EARTH_MASS;
planet->orbit.eccentricity = rand.pdrand(3);
planet->orbit.semiMajorAxis = ((i+1)*0.1)*AU;
planet->orbit.period = calc_orbital_period(planet->orbit.semiMajorAxis, primary->mass);
planet->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.pdrand(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand(M_PI));
primary->children.push_back(planet);
double ang;
planet->orbit.KeplerPosAtTime(0, &planet->radMin, &ang);
planet->orbit.KeplerPosAtTime(planet->orbit.period*0.5, &planet->radMax, &ang);
//printf(%f,%f\n", min/AU, max/AU);
//printf(%f year orbital period\n", planet->orbit.period / (60*60*24*365));
}
delete disc;
/* Merge children with overlapping or very close orbits. */
primary->EliminateBadChildren();
primary->name = s.m_systems[system_idx].name;
int idx = 0;
for(std::vector<SBody*>::iterator i = primary->children.begin(); i != primary->children.end(); ++i) {
/* Turn them into... something! */
char buf[3];
buf[0] = ' ';
buf[1] = 'b'+(idx++);
buf[2] = 0;
(*i)->name = primary->name+buf;
double d = 0.5*((*i)->radMin + (*i)->radMax);
(*i)->L3DckPlanetType(primary, d, rand, true);
}
}
void StarSystem::SBody::L3DckPlanetType(SBody* star, double distToPrimary, MTRand& rand, bool genMoons) {
float emass = mass / EARTH_MASS;
/* Surface temperature. */
/* https::/en.wikipedia.org/wiki/Black_body - Thanks again wiki. */
const double d = distToPrimary;
double albedo = rand(0.5);
double globalwarming = rand(0.9);
/* Light planets have like.. no atmosphere. */
if(emass < 1) globalwarming *= emass;
/* Big planets get high global warming owing to it's thick atmos. */
if(emass > 3) globalwarming *= (emass-2.0f);
globalwarming = CLAMP(globalwarming, 0, 0.95);
//printf("====\ndist %f, mass %f, albedo %f, globalwarming %f\n", d, emass, albedo, globalwarming);
/* This is all of course a total joke and un-physical.. Sorry. */
double bbody_temp;
bool fiddle = false;
for(int i = 0; i < 10; i++) {
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, d, albedo, globalwarming);
//printf(temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
/* Extreme high temperature and low mass causes atmosphere loss. */
#define ATMOS_LOSS_MASS_CUTOFF 2.0
#define ATMOS_TEMP_CUTOFF 400
#define FREEZE_TEMP_CUTOFF 220
if((bbody_temp > ATMOS_TEMP_CUTOFF) &&
(emass < ATMOS_LOSS_MASS_CUTOFF)) {
//printf("atmos loss\n");
globalwarming = globalwarming * (emass/ATMOS_LOSS_MASS_CUTOFF);
fiddle = true;
}
if(!fiddle) break;
fiddle = false;
}
/* This is bs. Should decide atmosphere composition and then freeze out
* components of it in the previous loop.
*/
if((bbody_temp < FREEZE_TEMP_CUTOFF) && (emass < 5)) {
globalwarming *= 0.2;
albedo = rand(0.05) + 0.9;
}
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, d, albedo, globalwarming);
// printf("= temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
averageTemp = bbody_temp;
if(emass > 317.8*13) {
/* More than 13 jupiter masses can fuse deuterium - is a brown dwarf. */
subtype = SBody::SUBTYPE_BROWN_DWARF;
/* TODO Should prevent mass exceeding 65 jupiter masses or so,
* when it becomes a star.
*/
} else if(emass > 300) {
subtype = SBody::SUBTYPE_PLANET_LARGE_GAS_GIANT;
} else if(emass > 90) {
subtype = SBody::SUBTYPE_PLANET_MEDIUM_GAS_GIANT;
} else if(emass > 6) {
subtype = SBody::SUBTYPE_PLANET_SMALL_GAS_GIANT;
} else {
/* Terrestrial planets. */
if(emass < 0.02) {
subtype = SBody::SUBTYPE_PLANET_DWARF;
} else if((emass < 0.2) && (globalwarming < 0.05)) {
subtype = SBody::SUBTYPE_PLANET_SMALL;
} else if(emass < 3) {
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
/* Try for life.. */
double minTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMax, albedo, globalwarming);
double maxTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMin, albedo, globalwarming);
if((minTemp > CELSIUS-10) && (minTemp < CELSIUS+70) &&
(maxTemp > CELSIUS-10) && (maxTemp < CELSIUS+70)) {
subtype = SBody::SUBTYPE_PLANET_INDIGENOUS_LIFE;
} else {
subtype = SBody::SUBTYPE_PLANET_WATER;
}
} else {
if(rand(0,1)) subtype = SBody::SUBTYPE_PLANET_CO2;
else subtype = SBody::SUBTYPE_PLANET_METHANE;
}
} else { /* 3 < emass < 6 */
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
subtype = SBody::SUBTYPE_PLANET_WATER_THICK_ATMOS;
} else {
if(rand(0,1)) subtype = SBody::SUBTYPE_PLANET_CO2_THICK_ATMOS;
else subtype = SBody::SUBTYPE_PLANET_METHANE_THICK_ATMOS;
}
}
/* Kinda crappy. */
if((emass > 0.8) && (!rand(0,15))) subtype = SBody::SUBTYPE_PLANET_HIGHLY_VOLCANIC;
}
/* Generate moons. */
if(genMoons) {
std::vector<float>* disc = AccreteDisc(2*sqrt(emass), 0.001, rand);
for(unsigned int i = 0; i < disc->size(); i++) {
float mass = (*disc)[i];
if(mass == 0) continue;
SBody* moon = new SBody;
moon->subtype = SBody::SUBTYPE_PLANET_DWARF;
moon->temp = 0;
moon->parent = this;
moon->radius = EARTH_RADIUS;
moon->mass = mass * EARTH_MASS;
moon->orbit.eccentricity = rand.pdrand(3);
moon->orbit.semiMajorAxis = ((i+1)*0.001)*AU;
moon->orbit.period = calc_orbital_period(moon->orbit.semiMajorAxis, this->mass);
moon->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.pdrand(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand(M_PI));
this->children.push_back(moon);
double ang;
moon->orbit.KeplerPosAtTime(0, &moon->radMin, &ang);
moon->orbit.KeplerPosAtTime(moon->orbit.period*0.5, &moon->radMax, &ang);
//printf("%f,%f\n", min/AU, max/AU);
//printf("%f year orbital period\n", moon->orbit.period / (60*60*24*365));
}
delete disc;
/* Merge moons with overlapping or very close orbits. */
EliminateBadChildren();
int idx = 0;
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
/* Turn them into.. Something. */
char buf[2];
buf[0] = '1'+(idx++);
buf[1] = 0;
(*i)->name = name+buf;
(*i)->L3DckPlanetType(star, d, rand, false);
}
}
}
StarSystem::~StarSystem(void) {
if(rootBody) delete rootBody;
}
bool StarSystem::IsSystem(int sector_x, int sector_y, int system_idx) {
return(sector_x == loc.secX) && (sector_y == loc.secY) && (system_idx == loc.sysIdx);
}
StarSystem::SBody::~SBody(void) {
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
delete (*i);
}
}