Lephisto/src/star_system.cpp
2018-01-13 18:05:28 +00:00

674 lines
22 KiB
C++

#include "star_system.h"
#include "sector.h"
#include "custom_starsystems.h"
#define CELSIUS 273.15
#define DEBUG_DUMP
/* Indexed by enum type. */
float StarSystem::starColors[][3] = {
{ 0, 0, 0 }, /* Gravpoint. /
{ 1.0, 0.2, 0.0 }, /* M */
{ 1.0, 0.6, 0.1 }, /* K */
{ 1.0, 1.0, 0.4 }, /* G */
{ 1.0, 1.0, 0.8 }, /* F */
{ 1.0, 1.0, 1.0 }, /* A */
{ 0.7, 0.7, 1.0 }, /* B */
{ 1.0, 0.7, 1.0 } /* O */
};
static const struct SBodySubTypeInfo {
StarSystem::BodySuperType supertype;
int mass; /* % sol for stars, unused for planets. */
int radius; /* % Sol radii for stars, % earth radii for planets. */
const char *description;
const char *icon;
int tempMin, tempMax;
} bodyTypeInfo[StarSystem::TYPE_MAX] = {
{
StarSystem::SUPERTYPE_NONE, 0, 0, "You can't see me!",
},
{
StarSystem::SUPERTYPE_STAR,
40, 50, "Type 'M' red star",
"icons/object_star_m.png",
2000, 3500
},
{
StarSystem::SUPERTYPE_STAR,
80, 90, "Type 'K' orange star",
"icons/object_star_k.png",
3500, 5000
},
{
StarSystem::SUPERTYPE_STAR,
110, 110, "Type 'G' yellow star",
"icons/object_star_g.png",
5000, 6000
},
{
StarSystem::SUPERTYPE_STAR,
170, 140, "Type 'F' white star",
"icons/object_star_f.png",
6000, 7500
},
{
StarSystem::SUPERTYPE_STAR,
310, 210, "Type 'A' hot white star",
"icons/object_star_a.png",
7500, 10000
},
{
StarSystem::SUPERTYPE_STAR,
1800, 700, "Bright type 'B' blue star",
"icons/object_star_b.png",
10000, 30000
},
{
StarSystem::SUPERTYPE_STAR,
6400, 1600, "Hot, massive type 'O' blue star",
"icons/object_star_o.png",
30000, 60000
},
{
StarSystem::SUPERTYPE_GAS_GIANT,
0, 30, "Brown dwarf sub-stellar object",
"icons/object_brown_dwarf.png"
},
{
StarSystem::SUPERTYPE_GAS_GIANT,
0, 390, "Small gas giant",
"icons/object_planet_small_gas_giant.png"
},
{
StarSystem::SUPERTYPE_GAS_GIANT,
0, 950, "Medium gas giant",
"icons/object_planet_medium_gas_giant.png"
},
{
StarSystem::SUPERTYPE_GAS_GIANT,
0, 1110, "Large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
StarSystem::SUPERTYPE_GAS_GIANT,
0, 1500, "Very large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 26, "Small, rocky dwarf planet",
"icons/object_planet_dwarf.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 52, "Small, rocky planet with a thin atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with liquid water and a nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with a carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with a methane atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with running water and a thick nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with a thick carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Rocky planet with a thick methane atmosphere",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "Highly volcanic world",
"icons/object_planet_small.png"
},
{
StarSystem::SUPERTYPE_ROCKY_PLANET,
0, 100, "World with indigenous life and an oxygen atmosphere",
"icons/object_planet_life.png"
}
};
StarSystem::BodySuperType StarSystem::SBody::GetSuperType(void) const {
return bodyTypeInfo[type].supertype;
}
const char* StarSystem::SBody::GetAstroDescription(void) {
return bodyTypeInfo[type].description;
}
const char* StarSystem::SBody::GetIcon(void) {
return bodyTypeInfo[type].icon;
}
static inline Sint64 isqrt(Sint64 a) {
Sint64 ret = 0;
Sint64 s;
Sint64 ret_sq = -a-1;
for(s = 62; s >= 0; s-=2) {
Sint64 b;
ret += ret;
b = ret_sq + ((2*ret+1)<<s);
if(b<0) {
ret_sq = b;
ret++;
}
}
return ret;
}
/* These are the nice floating point surface temp calculating stuff. */
static const double boltzman_const = 5.6704e-8;
static double calcEnergyPerUnitAreaAtDist(double star_radius, double star_temp,
double object_dist) {
const double total_solar_emission = boltzman_const *
star_temp*star_temp*star_temp*star_temp*
4*M_PI*star_radius*star_radius;
return total_solar_emission / (4*M_PI*object_dist*object_dist);
}
/* Bond albedo, not geometric. */
static double calcSurfaceTemp(double star_radius, double star_temp,
double object_dist, double albedo,
double greenhouse) {
const double energy_per_meter2 = calcEnergyPerUnitAreaAtDist(star_radius, star_temp,
object_dist);
const double surface_temp = pow(energy_per_meter2*(1-albedo)/(4*(1-greenhouse)*boltzman_const), 0.25);
return surface_temp;
}
/* Instead we use these ugly overflow-prone things. */
static fixed calcEnergyPerUnitAreaAtDist(fixed star_radius, int star_temp, fixed object_dist) {
fixed temp = star_temp * fixed(1, 10000);
const fixed total_solar_emission =
temp*temp*temp*temp*star_radius*star_radius;
return fixed(1744665451, 100000)*(total_solar_emission / (object_dist*object_dist));
}
static int calcSurfaceTemp(fixed star_radius, int star_temp, fixed object_dist, fixed albedo, fixed greenhouse) {
const fixed energy_per_meter2 = calcEnergyPerUnitAreaAtDist(star_radius, star_temp, object_dist);
const fixed surface_temp_pow4 = energy_per_meter2*(1-albedo)/(1-greenhouse);
return isqrt(isqrt((surface_temp_pow4.v>>16)*4409673));
}
void StarSystem::Orbit::KeplerPosAtTime(double t, double* dist, double* ang) {
double e = eccentricity;
double a = semiMajorAxis;
/* Mean anomaly. */
double M = 2*M_PI*t / period;
/* Eccentic anomaly. */
double E = M + (e - (1/8.0)*e*e*e)*sin(M) +
(1/2.0)*e*e*sin(2*M) +
(3/8.0)*e*e*e*sin(3*M);
/* True anomaly (angle of orbit position). */
double v = 2*atan(sqrt((1+e)/(1-e)) * tan(E/2.0));
/* Heliocentric distance. */
double r = a * (1 - e*e) / (1 + e*cos(v));
*ang = v;
*dist = r;
}
vector3d StarSystem::Orbit::CartesianPosAtTime(double t) {
double dist, ang;
KeplerPosAtTime(t, &dist, &ang);
vector3d pos = vector3d(cos(ang)*dist, sin(ang)*dist, 0);
pos = rotMatrix * pos;
return pos;
}
static std::vector<int>* AccreteDisc(int size, int bandSize, int density, MTRand& rand) {
std::vector<int>* disc = new std::vector<int>(size);
int bandDensity = 0;
for(int i = 0; i < size; i++) {
if(!(i%bandSize)) bandDensity = rand.Int32(density);
(*disc)[i] = bandDensity * rand.Int32(density);
}
for(int iter = 0; iter < 20; iter++) {
for(int i = 0; i < (signed)disc->size(); i++) {
int d=1+(i/3);
for(; d > 0; d--) {
if((i+d < (signed)disc->size()) && ((*disc)[i] > (*disc)[i+d])) {
(*disc)[i] += (*disc)[i+d];
(*disc)[i+d] = 0;
}
if(((i-d) >= 0) && ((*disc)[i] > (*disc)[i-d])) {
(*disc)[i] += (*disc)[i-d];
(*disc)[i-d] = 0;
}
}
}
}
return disc;
}
double calc_orbital_period(double semiMajorAxis, double centralMass) {
return 2.0*M_PI*sqrtf((semiMajorAxis*semiMajorAxis*semiMajorAxis)/(G*centralMass));
}
void StarSystem::SBody::EliminateBadChildren(void) {
/* Check for overlapping & unacceptably close orbits. Merge planets. */
for (std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
if((*i)->tmp) continue;
for(std::vector<SBody*>::iterator j = children.begin(); j != children.end(); ++j) {
if((*j) == (*i)) continue;
/* Don't eat anything bigger than self. */
if((*j)->mass > (*i)->mass) continue;
fixed i_min = (*i)->radMin;
fixed i_max = (*i)->radMax;
fixed j_min = (*j)->radMin;
fixed j_max = (*j)->radMax;
fixed i_avg = (i_min+i_max)>>1;
fixed j_avg = (j_min+j_max)>>1;
bool eat = false;
if(i_avg > j_avg) {
if(i_min < j_max*fixed(13, 10)) eat = true;
} else {
if(i_max > j_min*fixed(7, 10)) eat = true;
}
if(eat) {
(*i)->mass += (*j)->mass;
(*j)->tmp = 1;
}
}
}
/* Kill the eaten ones. */
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end();) {
if((*i)->tmp) {
i = children.erase(i);
}
else i++;
}
}
#if 0
struct CustomSBody {
const char* name; /* Null to end system. */
StarSystem::BodyType type;
int primaryIdx; /* -1 for primary. */
fixed radius; /* In earth radii for planets, sol radii for stars. */
fixed mass; /* Earth masses or sol masses. */
int averageTemp; /* Kelvin. */
fixed semiMajorAxis; /* in AUs. */
fixed eccentricity;
}
#endif
void StarSystem::CustomGetChildOf(SBody* parent, const CustomSBody* customDef, const int primaryIdx) {
const CustomSBody* c = customDef;
for(int i = 0; c->name; c++, i++) {
if(c->primaryIdx != primaryIdx) continue;
SBody* child = new SBody;
StarSystem::BodyType type = c->type;
child->type = type;
child->parent = parent;
child->radius = c->radius;
child->mass = c->mass;
child->averageTemp = c->averageTemp;
child->name = c->name;
child->rotationPeriod = c->rotationPeriod;
child->orbit.eccentricity = c->eccentricity.ToDouble();
child->orbit.semiMajorAxis = c->semiMajorAxis.ToDouble() * AU;
child->orbit.period = calc_orbital_period(child->orbit.semiMajorAxis, parent->GetMass());
child->orbit.rotMatrix = matrix4x4d::RotateYMatrix(c->inclination) *
matrix4x4d::RotateZMatrix(rand.Double(M_PI));
parent->children.push_back(child);
/* Perihelion and Aphelion (in AUS). */
child->radMin = c->semiMajorAxis - c->eccentricity*c->semiMajorAxis;
child->radMax = 2*c->semiMajorAxis - child->radMin;
CustomGetChildOf(child, customDef, i);
}
}
void StarSystem::GenerateFromCustom(const CustomSBody* customDef) {
/* Find primary. */
const CustomSBody* csbody = customDef;
int idx = 0;
while((csbody->name) && (csbody->primaryIdx != -1)) { csbody++; idx++; }
assert(csbody->primaryIdx == -1);
rootBody = new SBody;
StarSystem::BodyType type = csbody->type;
rootBody->type = type;
rootBody->parent = NULL;
rootBody->radius = csbody->radius;
rootBody->mass = csbody->mass;
rootBody->averageTemp = csbody->averageTemp;
rootBody->name = csbody->name;
CustomGetChildOf(rootBody, customDef, idx);
}
/*
* Choices that depend on floating point values will result in
* different universes on different platforms it seems.
* As a result we should avoid floating point values in these places.
*/
StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
unsigned long _init[4] = { system_idx, sector_x, sector_y, UNIVERSE_SEED };
loc.secX = sector_x;
loc.secY = sector_y;
loc.sysIdx = system_idx;
rootBody = 0;
if(system_idx == -1) return;
rand.seed(_init, 4);
Sector s = Sector(sector_x, sector_y);
if(s.m_systems[system_idx].customDef) {
GenerateFromCustom(s.m_systems[system_idx].customDef);
return;
}
/* Primary. */
SBody* primary = new SBody;
int isBinary = rand.Int32(2);
if(!isBinary) {
StarSystem::BodyType type = s.m_systems[system_idx].primaryStarClass;
primary->type = type;
primary->parent = NULL;
primary->radius = fixed(bodyTypeInfo[type].radius, 100);
primary->mass = fixed(bodyTypeInfo[type].mass, 100);
primary->averageTemp = rand.Int32(bodyTypeInfo[type].tempMin,
bodyTypeInfo[type].tempMax);
primary->name = s.m_systems[system_idx].name;
rootBody = primary;
} else {
SBody* centGrav = new SBody;
centGrav->type = TYPE_GRAVPOINT;
centGrav->parent = NULL;
centGrav->name = s.m_systems[system_idx].name;
rootBody = centGrav;
fixed ecc = rand.NFixed(3);
StarSystem::BodyType type = s.m_systems[system_idx].primaryStarClass;
SBody* star[2];
star[0] = new SBody;
star[0]->type = type;
star[0]->name = s.m_systems[system_idx].name+" A";
star[0]->parent = centGrav;
star[0]->radius = fixed(bodyTypeInfo[type].radius, 100);
star[0]->mass = fixed(bodyTypeInfo[type].mass, 100);
star[0]->averageTemp = rand.Int32(bodyTypeInfo[type].tempMin,
bodyTypeInfo[type].tempMax);
/*
* Usually, star types are chosen by spectral class distribution in
* our galactic neighbourhood. In binary systems, we instead just choose
* random companion types up to spectral class of primary.
*/
StarSystem::BodyType type2 = (BodyType)rand.Int32(TYPE_STAR_M, type);
star[1] = new SBody;
star[1]->type = type2;
star[1]->name = s.m_systems[system_idx].name+" B";
star[1]->parent = centGrav;
star[1]->radius = fixed(bodyTypeInfo[type2].radius, 100);
star[1]->mass = fixed(bodyTypeInfo[type2].mass, 100);
star[1]->averageTemp = rand.Int32(bodyTypeInfo[type2].tempMin,
bodyTypeInfo[type2].tempMax);
fixed m = star[0]->mass + star[1]->mass;
fixed a0 = star[1]->mass / m;
fixed a1 = star[0]->mass / m;
fixed semiMajorAxis;
switch(rand.Int32(3)) {
case 2: semiMajorAxis = fixed(rand.Int32(100, 10000), 100); break;
case 1: semiMajorAxis = fixed(rand.Int32(10, 1000), 100); break;
default:
case 0: semiMajorAxis = fixed(rand.Int32(1, 100), 100); break;
}
printf("Binary seperation: %.2fAU\n", semiMajorAxis.ToDouble());
star[0]->orbit.eccentricity = ecc.ToDouble();
star[0]->orbit.semiMajorAxis = AU * (semiMajorAxis*a0).ToDouble();
star[0]->orbit.period = 60*60*24*365*semiMajorAxis.ToDouble()*sqrt(semiMajorAxis.ToDouble() / m.ToDouble());
star[0]->orbit.rotMatrix = matrix4x4d::RotateZMatrix(M_PI);
star[1]->orbit.eccentricity = ecc.ToDouble();
star[1]->orbit.semiMajorAxis = AU * (semiMajorAxis*a1).ToDouble();
star[1]->orbit.period = star[0]->orbit.period;
star[1]->orbit.rotMatrix = matrix4x4d::Identity();
fixed radMin = semiMajorAxis - ecc*semiMajorAxis;
fixed radMax = 2*semiMajorAxis - radMin;
star[0]->radMin = radMin;
star[1]->radMin = radMin;
star[0]->radMax = radMax;
star[1]->radMax = radMax;
centGrav->children.push_back(star[0]);
centGrav->children.push_back(star[1]);
return;
}
/* FIXME: Not good if the enum is tampered with... */
int disc_size = rand.Int32(6, 100) + rand.Int32(60,140)*primary->type*primary->type;
//printf("disc_size %.1fAU\n", disc_size/10.0);
std::vector<int>* disc = AccreteDisc(disc_size, 10, rand.Int32(10,400), rand);
for(unsigned int i = 0; i < disc->size(); i++) {
fixed mass = fixed((*disc)[i]);
if(mass == 0) continue;
SBody* planet = new SBody;
planet->type = TYPE_PLANET_DWARF;
planet->seed = rand.Int32();
planet->tmp = 0;
planet->parent = primary;
//planet->radius = EARTH_RADIUS*bodyTypeInfo[type].radius;
planet->mass = mass;
planet->rotationPeriod = fixed(rand.Int32(1,200), 24);
fixed ecc = rand.NFixed(3);
fixed semiMajorAxis = fixed(i+1, 10); /* In AUs. */
planet->orbit.eccentricity = ecc.ToDouble();
planet->orbit.semiMajorAxis = semiMajorAxis.ToDouble() * AU;
planet->orbit.period = calc_orbital_period(planet->orbit.semiMajorAxis, SOL_MASS*primary->mass.ToDouble());
planet->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.NDouble(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand.Double(M_PI));
primary->children.push_back(planet);
/* Perihelion and Aphelion. ( In AUs ) */
planet->radMin = semiMajorAxis - ecc*semiMajorAxis;
planet->radMax = 2*semiMajorAxis - planet->radMin;
}
delete disc;
/* Merge children with overlapping or very close orbits. */
primary->EliminateBadChildren();
primary->name = s.m_systems[system_idx].name;
int idx = 0;
for(std::vector<SBody*>::iterator i = primary->children.begin(); i != primary->children.end(); ++i) {
/* Turn them into... something! */
char buf[3];
buf[0] = ' ';
buf[1] = 'b'+(idx++);
buf[2] = 0;
(*i)->name = primary->name+buf;
fixed d = ((*i)->radMin + (*i)->radMax) >> 1;
(*i)->PickPlanetType(primary, d, rand, true);
#ifdef DEBUG_DUMP
printf("%s: mass %f, semi-major axis %fAU, ecc %f\n",
(*i)->name.c_str(), (*i)->mass.ToDouble(), (*i)->orbit.semiMajorAxis/AU,
(*i)->orbit.eccentricity);
#endif
}
}
void StarSystem::SBody::PickPlanetType(SBody* star, const fixed distToPrimary, MTRand& rand, bool genMoons) {
fixed albedo = rand.Fixed() * fixed(1,2);
fixed globalwarming = rand.Fixed() * fixed(9,10);
/* Light planets have like.. no atmosphere. */
if(mass < 1) globalwarming *= mass;
/* Big planets get high global warming owing to it's thick atmos. */
if(mass > 3) globalwarming *= (mass - 2);
globalwarming = CLAMP(globalwarming, fixed(0), fixed(95, 100));
/* This is all of course a total joke and un-physical.. Sorry. */
int bbody_temp;
bool fiddle = false;
for(int i = 0; i < 10; i++) {
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, distToPrimary, albedo, globalwarming);
//printf(temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
/* Extreme high temperature and low mass causes atmosphere loss. */
#define ATMOS_LOSS_MASS_CUTOFF 2
#define ATMOS_TEMP_CUTOFF 400
#define FREEZE_TEMP_CUTOFF 220
if((bbody_temp > ATMOS_TEMP_CUTOFF) &&
(mass < ATMOS_LOSS_MASS_CUTOFF)) {
//printf("atmos loss\n");
globalwarming = globalwarming * (mass/ATMOS_LOSS_MASS_CUTOFF);
fiddle = true;
}
if(!fiddle) break;
fiddle = false;
}
/* This is bs. Should decide atmosphere composition and then freeze out
* components of it in the previous loop.
*/
if((bbody_temp < FREEZE_TEMP_CUTOFF) && (mass < 5)) {
globalwarming *= 0.2;
albedo = rand.Double(0.05) + 0.9;
}
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, distToPrimary, albedo, globalwarming);
// printf("= temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
averageTemp = bbody_temp;
if(mass > 317*13) {
/* More than 13 jupiter masses can fuse deuterium - is a brown dwarf. */
type = TYPE_BROWN_DWARF;
/* TODO Should prevent mass exceeding 65 jupiter masses or so,
* when it becomes a star.
*/
} else if(mass > 300) {
type = TYPE_PLANET_LARGE_GAS_GIANT;
} else if(mass > 90) {
type = TYPE_PLANET_MEDIUM_GAS_GIANT;
} else if(mass > 6) {
type = TYPE_PLANET_SMALL_GAS_GIANT;
} else {
/* Terrestrial planets. */
if(mass < fixed(2,100)) {
type = TYPE_PLANET_DWARF;
} else if((mass < fixed(2,10)) && (globalwarming < fixed(5,100))) {
type = TYPE_PLANET_SMALL;
} else if(mass < 3) {
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
/* Try for life.. */
int minTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMax, albedo, globalwarming);
int maxTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMin, albedo, globalwarming);
if((minTemp > CELSIUS-10) && (minTemp < CELSIUS+70) &&
(maxTemp > CELSIUS-10) && (maxTemp < CELSIUS+70)) {
type = TYPE_PLANET_INDIGENOUS_LIFE;
} else {
type = TYPE_PLANET_WATER;
}
} else {
if(rand.Int32(0,1)) type = TYPE_PLANET_CO2;
else type = TYPE_PLANET_METHANE;
}
} else { /* 3 < mass < 6 */
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
type = TYPE_PLANET_WATER_THICK_ATMOS;
} else {
if(rand.Int32(0,1)) type = TYPE_PLANET_CO2_THICK_ATMOS;
else type = TYPE_PLANET_METHANE_THICK_ATMOS;
}
}
/* Kinda crappy. */
if((mass > fixed(8,10)) && (!rand.Int32(0,15))) type = TYPE_PLANET_HIGHLY_VOLCANIC;
}
radius = fixed(bodyTypeInfo[type].radius, 100);
/* Generate moons. */
if((genMoons) && (mass > fixed(1,2))) {
std::vector<int>* disc = AccreteDisc(isqrt(mass.v>>13), 10, rand.Int32(1, 10), rand);
for(unsigned int i = 0; i < disc->size(); i++) {
fixed mass = fixed((*disc)[i]);
if(mass == 0) continue;
SBody* moon = new SBody;
moon->type = TYPE_PLANET_DWARF;
moon->seed = rand.Int32();
moon->tmp = 0;
moon->parent = this;
//moon->radius = EARTH_RADIUS*bodyTypeInfo[type].radius;
moon->rotationPeriod = fixed(rand.Int32(1,200), 24);
moon->mass = mass;
fixed ecc = rand.NFixed(3);
fixed semiMajorAxis = fixed(i+2, 2000);
moon->orbit.eccentricity = ecc.ToDouble();
moon->orbit.semiMajorAxis = semiMajorAxis.ToDouble()*AU;
moon->orbit.period = calc_orbital_period(moon->orbit.semiMajorAxis, this->mass.ToDouble() * EARTH_MASS);
moon->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.NDouble(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand.NDouble(M_PI));
this->children.push_back(moon);
moon->radMin = semiMajorAxis - ecc*semiMajorAxis;
moon->radMax = 2*semiMajorAxis - moon->radMin;
}
delete disc;
/* Merge moons with overlapping or very close orbits. */
EliminateBadChildren();
int idx = 0;
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
/* Turn them into.. Something. */
char buf[2];
buf[0] = '1'+(idx++);
buf[1] = 0;
(*i)->name = name+buf;
(*i)->PickPlanetType(star, distToPrimary, rand, false);
}
}
}
StarSystem::~StarSystem(void) {
if(rootBody) delete rootBody;
}
bool StarSystem::IsSystem(int sector_x, int sector_y, int system_idx) {
return(sector_x == loc.secX) && (sector_y == loc.secY) && (system_idx == loc.sysIdx);
}
StarSystem::SBody::~SBody(void) {
for(std::vector<SBody*>::iterator i = children.begin(); i != children.end(); ++i) {
delete (*i);
}
}