
Portfolio Project 02

Section 2 contains two Portfolio Projects. You are currently undertaking Section 2

Part C, which contains Portfolio Project 02.

You should NOT submit your work for marking until you have completed ALL

Portfolio Projects contained within Section 2. Therefore you must submit your work

to your tutor team for marking once you have completed all of the projects.

As you complete the work for each of these projects you should place your work in a

suitable folder.

Details regarding how to submit your portfolio work for marking can be found at the

end of this document.

This is the second of a series of special projects that will test your ability and understanding

in specific areas of game programming. These will be assessed by your tutors and must be

completed to a sufficiently high standard to allow you to progress to the next section of the

course.

You must pay particular attention to the presentation of your project; this will be an area that

we will be looking at during the assessment of your work.

It is recommended that you use the previously supplied Visual C++ Express Edition to create

this portfolio project.

Your submission must include:

 A .zip or .rar file containing your source code.

 A compiled executable for a Windows environment.

 A document in .doc or .docx format listing any idiosyncrasies or bugs in the code
and crediting the source of any non-original code used.

Learning Objectives
 Demonstrate the ability to prepare and execute your own code.

 Demonstrate skill in investigating programming tasks within a game
framework.

 Demonstrate ability to develop key games software systems that can be reused
as part of a larger game or demo.

 Be able to Understand common techniques used in writing games software.

The Brief

For this project you will be working on a series of assignments and solutions designed to be
integrated into your own game design project that you have written. These tasks should
enable you to build a frame work with which to integrate into your own game. You are
encouraged to source and use your own art and sound assets, many of which can be found
for free on the Internet. Remember to always check that the assets you use are free to use
and are not subject to copyright law.

Scope
This project is split into five separate programming tasks each of which should take you
approximately 48 hours to complete. Each task will consist of a programming exercise and
you are expected to provide for each task, a working executable, source code and a
document of no more than 2000 words. The document should detail how you approached
the problem any key features of the code that you think need special consideration and
crediting any third party source code or libraries that you have used.

You need to make sure that each solution solves the programming task and that you have
documented how you approached the problem.

It is expected that to achieve full marks you will provide evidence of having researched the
particular problem and have implemented your own software solution. Your software should
also be robust and free from any obvious serious bugs.

Tasks

Path Finding

Many games require realistic behaviour from objects that are not under the direct control of

the player. This could be the dynamic movement of physical objects under the influence of

external forces such as gravity, but it could also be the artificial intelligence of characters and

their apparent decision making abilities during navigation. This path finding behaviour allows

an object to travel between two predetermined points while avoiding obstacles along the way.

A game level is typically represented by a map, where each indivisible element equates to a

navigable point that can be occupied by a game object. These nodes do not necessarily need

to be equivalent to the on screen graphics, but it can be simpler to visualise the problem in

this way. The graph of nodes represents all possible connections between each point and will

(somewhere) contain the path or paths with the lowest cost. Finding this shortest route

efficiently is the purpose of all path finding algorithms.

A popular path finding method is the A* search algorithm, although many similar routines

exist. This project aims to investigate path finding within the context of a simple game

framework. The game is not important, but it must at least present the need for objects to

navigate around a level that offers challenges such as goals and obstacles. The game could

require a number of objects to navigate a simple maze, but a variable terrain map would also

offer significant exploration opportunities.

The basic idea is to find the path with the lowest cost, which in a simple maze may well be

the shortest route too. However, a node could also be assigned its own cost value, making it

more or less desirable to the path finding algorithm. The A* algorithm employs a heuristic

function to estimate the remaining cost of the route to the goal, which is a good guess, but

probably doesn't take obstacles into account. Path finding is computationally expensive, so it

will be necessary to investigate various optimisations when many objects are navigating at

once.

Depending on the distance between the start and end points, it is possible to decrease the

search time by using a hierarchical system that finds a coarse route based on higher level

nodes, only to solve the fine detail over the short path found within the larger nodes.

Similarly, predetermined waypoints can be added at the level design stage that are used to

precompute connectivity information. Collision avoidance between objects tries to prevent

paths crossing so that objects appear to be aware of each others' presence and take action

ahead of time, which is particularly useful in crowd simulation.

Sprite Blitting

Traditional games using 2D graphics have to rapidly display numerous bitmaps on screen to

give the illusion of movement and animation. A full screen background layer may be

represented by tiles, which are stored as an indexed array of small repeatable bitmaps. The

objects displayed in front are sprites and are also stored as small bitmaps. Some platforms

provide direct hardware support for these components, freeing the game code from the need

to construct the raster image. However, it is important to understand (and sometimes

necessary to implement in software) how the graphical display of a game can be constructed

from these smaller components.

A software implementation of sprites typically requires a framebuffer that is a bitmap

representing the entire screen. It is a two dimensional array in memory, given a width and

height in pixels, with each element defined by a pixel format. This format is usually governed

by hardware constraints, but typically contains at least the three red, green and blue colour

channels to some bit depth. For example, a 16 bit framebuffer may use a pixel format that

gives 5 bits (32 levels) per channel, or an 8 bit indexed colour buffer may reference a 256

entry palette of 24 bit colours. The sprites themselves refer to bitmaps, which may have a

different pixel format and are to be copied to the framebuffer at a certain coordinate.

This operation is known as a blit, which basically copies the contents of one memory location

to another, with regard to the relative pixel format, stride and compression. This assignment

aims to develop a complete software sprite implementation within the framework of a simple

game. Emphasis must be placed on the techniques used to render the sprites to the screen,

rather than the game itself. Existing APIs can be used for loading image data and for the

display and update of a window. The sprite blitting should be platform agnostic as far as

possible and capable of handling at least truecolour and indexed colour pixel formats.

A common technique for smooth animation is to use a double buffer, where two framebuffers

exist to prevent tearing artifacts. While the front buffer is being displayed to the player, the

game is blitting into the back buffer ready for the next frame. During the vertical black

interval, the back buffer then becomes displayed to the player and the process continues to

the next frame. A hardware implementation may require both pages in video RAM and then

flip between them each frame. In software, it is possible to have the back buffer in main

memory which is then itself blitted to the front buffer during the vertical blank.

Transparency may also be a requirement of some pixel formats, requiring the blitting

function to either ignore or blend certain pixels based on their colour value, using techniques

such as colour keying or alpha blending. Animation can be achieved by moving the

foreground sprites over the background tiles, but it is usually expected that each sprite also

displays different frames of animation over time. These can sometimes be stored efficiently

in the same bitmap, with coordinates used to locate the offset of each frame. Image

compression techniques, such as palettisation and run length encoding can be employed to

not only decrease the memory requirements but also increase the blitting speed in some cases.

Data Serialisation

Game assets, such as bitmaps and samples for sprites and sounds, can usually be found

alongside the executable binary game file on the disk. This data is dynamically loaded at run-

time so that it can be accessed by the game code. It is stored as a stream of bytes that must be

parsed in order to construct the internal data structures of the game. The process of

converting the structure and data of an object to and from a stream is known as serialisation.

Common file formats for bitmaps and samples usually have their own well defined file

formats and serialisation libraries. This may well be useful for the initial development a

game, however there are many reasons why it may be beneficial to use a custom format

specific to the game, such as compression (increasing speed while decreasing size) or

obfuscation. Also, there will be data unique to the game for which no file format exists, such

as levels, maps, animation or configuration files. For this reason, it is necessary to develop a

data serialisation framework that is capable of loading and saving game objects.

Another important aspect of game development is content creation and the ease with which

others can supply usable data for the game. While widely available tools can produce data in

common file formats, custom data must either be created by in-house tools or by hand in a

human readable text format. The aim of this assignment is to produce a simple game example

that makes extensive use of its own data serialisation mechanisms. A complete game is not

required, but it must demonstrate the ability to load and save custom game data using a file

format that can easily be edited as text. The ultimate goal is to implement a serialiser class

and an abstract serialisable class that can be used to allow an object to supply named values

to the serialiser.

A class that implements the serialisable class will provide the load and save methods which

are invoked from the serialiser. The load method will be able to call methods on the serialiser

to register each of its members with the serialiser, providing a type, name and reference or a

function pointer to a handler for complex types. As the serialiser parses the file, it will

gradually initialise members of the object. The save method will be able to call similar

methods on the serialiser to write members to the stream.

The serialiser can convert the data to and from a custom human readable text file. However,

there are many existing formats such as XML, YAML or JSON which are more than adequate

for the task. Ideally, the serialiser itself would also be an abstract class that can then be used

to implement serialisers for more than one data format. The ability to serialise a binary file

would then be possible, but care must be taken in order to provide platform independence

regarding type conventions such as endianess, size and character encoding.

Procedural Generation

While the majority of game data is created during the development process and eventually

serialised from disk, there are occasions when it is necessary to generate the data

procedurally at run-time. Some data may just be too large to distribute or fit in memory,

while other data may depend on user input such as customising in-game parameters. The

general case for procedural generation is when a large set of combinations is required from a

limited choice of parameters. Game code then applies the parameters to an algorithm,

possibly using existing assets to produce one of many new unique assets.

There are numerous examples where this technique can be put to good use in a game. The

generation of random levels is paramount to many non-linear games from puzzle to strategy

games, to provide a unique, unpredictable environment on each replay. There may be many

instances of the same object in a game where it would be beneficial provide slight variations

in their appearance in order to improve realism. Apart from producing a variety of seemingly

unpredictable content, it is also important to realise that the same set of parameters will

always produce the same outcome. This is a very useful form of data compression when it

comes to serialising game data.

This assignment expects some form of procedural generation of game assets within a simple

framework game. The game can be minimal, but it must demonstrate an innovative approach

to how it produces some of the content. The level or even the sprites themselves are prime

examples of objects that can be generated on the fly. The parameters could be randomly

assigned or they could be defined in a configuration file. It is only necessary to present the

ability to produce a large variety of game assets from a limited set of building blocks.

Efficiency in terms of size and speed is a key component of a procedural generation

algorithm. The game may choose to produce a large static data set (such as a map) at the

beginning of the game, in which case it has the time to generate this during a slower

initialisation phase. But the game may instead require an extremely large (practically infinite)

play area where only a small portion is available to the player at any one time. In this case,

the algorithm must be capable of producing the procedural data in a very short amount of

time, based on coordinates, to give the impression of a seamless world.

The algorithm itself will likely be based around some common mathematical concepts such

as probability, noise or fractals. A simple pseudorandom number generator given the same

seed parameter will always produce the same sequence of apparently random numbers. This

sequence can then be used to compare against probability parameters, to test the chances of a

certain game object appearing at a specific location of the map, for example. The same

pseudorandom sequence could also be used as the basis of a noise function which may be

used to represent a landscape. Fractal algorithms can be used to produce data that exhibits

self similarity at many levels that may not otherwise be possible with other techniques. Often,

a hybrid approach may offer the best solution, an obvious example of which would be the

simulation of a tree.

Memory Management

Game data must at some point occupy a section of main memory so that the game code can

access it after it has been loaded from the disk. This can occur at load-time when the game

code itself is loaded from disk into main memory and statically defined data structures are

allocated a region of their own. This memory is deallocated when the game finally exits. It

can also happen automatically from the stack, such as the allocation of parameters, local

variables and return value during a function call. This memory is deallocated simply and

quickly when the program flow returns from the function call.

However, a common requirement of games is to allocate a portion of memory dynamically at

run-time, especially if the size of the block is not known at compile-time and it is required to

persist outside of the current scope. Dynamic memory allocation is typically managed using a

heap, which is usually a large block of free memory that is statically allocated for the game at

load-time. The game does not necessarily need to know the organisation of the heap and

instead relies upon an abstract interface to allocate and free memory blocks of a required

size.

Given the limited constraints of many game platforms, memory management is a particularly

important area of game code design. For this assignment, the aim is to implement an efficient

dynamic memory manager within the framework of a very simple game example. The game

itself need not be complete, but it must demonstrate multiple objects being created and

destroyed inconsistently at run-time. The emphasis is on the heap itself, such as the methods

to allocate and free blocks and how the lists of these blocks are stored. Particular attention

can be given to efficiency, fragmentation, memory leaks and tracking.

If memory is allocated frequently during run-time, the memory manager must be able to

quickly allocate a block of the required size. This requires an algorithm to rapidly search the

free list for a block that is just the right size. Also, when blocks are allocated after previous

ones have been freed, holes can appear in the heap where free blocks are dispersed among

allocated ones. This fragmentation can result in there not being a free block large enough for

a required allocation, even though the total amount of free memory should be enough to

accommodate the request.

Allocating a piece of memory, but subsequently losing the reference or failing to clean up

properly will result in a memory leak. These can be detected as the game exits and the

memory manager can report on all remaining allocated blocks. However, it can be even more

useful to track the file and line at which the allocation occurred, so that the bug can be found

and fixed. This tracking information is also useful at run-time, where the memory manager

could output a report of all currently allocated memory, including size and number of

allocations from a particular file and line number. Finally, it may be useful to override the

new and delete operators to use the allocate and free methods of the new memory manager.

Portfolio Project Submission
Prior to submission we recommend that you thoroughly review your Portfolio Project work for
Section 2. You must pay particular attention to the presentation of your projects as this will
be an area that we will be looking at during the assessment of your work.

Your submissions for the various projects will include text documents, 2D images, charts,
levels, reports and other material. Any material you submit should be presented in a
professional manner, having been spellchecked, play-tested and checked for consistency
where necessary.

All paper-based submissions should be kept together in a suitable folder and any coding and
assets submitted on optical media or memory sticks. Care should be taken to ensure that
such media are package in such a way as to minimise the chance of damage during transit.

You should send your completed Portfolio Projects to:

Teaching Department
Train2Game
Freepost ANG7795
Luton
LU1 1BR

