
1

Train2Game Game Developer - Portfolio Project Marking Criteria

Each Portfolio Project will be judged against a set of criteria which are based on the main aspects of the overall task. Each of these criteria will be
assigned a grading band from those shown below:

 Unsatisfactory
Essentially, a part of the assignment has been totally missed out (for example, if one of the criteria is to describe or implement NPC behaviour
but this is omitted), or no evidence is provided that time has been spent working on that part.

 Needs Improving
Key parts don’t quite meet what is expected, or may be incomplete or not completed in the right way. However, there is evidence in the
work that it is understood what is required and an attempt has been made at least. With possibly minor improvements or revision this would
be able to pass, although a significant amount of work would likely be required in order to produce a higher quality of work.

 Satisfactory
This is essentially a simple “pass”. The work covers what is needed to pass but there is a lot of room for improvement. The work would
probably show a good start and, with improvement, could be easily upgraded to a Clear Pass or Excellent.

 Clear Pass
Indicates that the work has been completed well and, although there may be room for improvement, the work is of significant enough merit
to be above the bare minimum needed to pass.

 Excellent
This indicates either a high quality (there would not be anything that can be done to improve that part of the assignment) or high completion
(there is nothing left to do to complete that part of the assignment).

To achieve an overall pass for a Portfolio Project, each of the criteria must achieve a Satisfactory, Clear Pass, or Excellent grading. A single grading of
Unsatisfactory or Needs Improving against one or more of the criteria will result in the Portfolio Project needing to be reattempted.

A breakdown of the criteria for each of the Portfolio Projects follows.

2

Marking Criteria

Game Developer

3

Developer Section 2B - Games Design/Technical Design Document

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
33%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Communication
How well ideas and
concepts are
communicated and how
the language adheres to
industry-relevant
terminology. How the use
of flowcharts assists with
explanation and
communication of ideas
and concepts.
33%

No original ideas or
concepts
communicated, or the
language is too difficult
to properly understand
what is trying to be
communicated. No
flowchart or diagrams.

Although it is evident that ideas and
concepts are being communicated,
they are difficult to properly
understand. The language used may
be inappropriate or immature,
inconsistent or convoluted with too
much un-necessary information.
Inappropriate or irrelevant
diagram(s) or flowchart(s) included.

Generally well communicated,
although there is occasionally
some ambiguity over what is
trying to be communicated or
it is unclear what is being said.
Any included
diagram(s)/flowchart(s) omit
some information or are
unclear.

Ideas and concepts are
well communicated with
very little refinement or
rewording required.
Flowchart(s) and/or
diagram(s) are included
and complete.

Ideas and concepts communicated in
a clear and concise way using
relevant industry terminology where
appropriate. Accompanying
diagram(s)/flow chart(s) provide are
appropriate, clear and compliment
the report well.

Technical considerations
Investigation into technical
issues relating to the
implementation of the
design.
34%

No consideration of any
technical issues.

Mention of some technical issues
but largely irrelevant, incomplete or
flawed in premise.

Some basic key issues have
been considered. Little or no
consideration of any of the
mentioned issues may be
resolved

A range of issues have
been considered with
some view to how they
may be overcome

Comprehensive review of a range of
technical issues with possible
suggested solutions

Grade:

/ 10

4

Developer Section 2C - Pathfinding

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Program unfinished or
fails to run.

An attempt has been made to
implement pathfinding, however
the program fails to pathfind
between two points reliably.

Program can pathfinding
between two points, but is
fairly “crude” in it’s
demonstration. The program is
limited in scope and does not
demonstrate any additional
functionality.

Program can pathfind
between two points with
some additional features,
such as collision
avoidance or variable path
costs.

Program pathfinds between two
points. Evidence of collision
detection and/or avoidance. Variable
path costs implemented.

5

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands how the
pathfinding in their
program works.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain what the
program does but little or no
understanding is evident of how it
works. More needs to be written
about how the pathfinding
algorithm works and how it has
been implemented in their
program.

Explanation is given as to how
the program works and it is
evident that the student
understands the basics of their
algorithm. Some confusion or
omission of steps in the
algorithm is evident.

A good piece of
documentation that
explains the workings of
the program and how
their pathfinding
algorithm works.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the workings of
their pathfinding algorithm.

Grade:

/ 10

6

Developer Section 2C - Sprite Blitting

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work would
benefit significantly from

improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code
layout and commenting is evident
but may be inconsistent or
unclear.

Some attention has been paid to
the layout of the code but the
code would benefit from being
easier to read. Naming
conventions and indentation is
inconsistent or needs improving.
Comments are reasonable but
could be improved to explain the
code better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming,
accessors/mutators either
unused or used wrongly. Code is
un-necessarily repeated. Program
suffers from poor coding.

Some evidence of code re-use
and accessors and mutators have
been implemented for variable
access. The program runs fairly
well but the code is inefficiently
written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Program fails to run or
does not demonstrate
any successful blitting
of sprites.

An attempt has been made to
combine a sprite with a
background, although there may
be visual errors in the resulting
image. Limited or no additional
features considered.

Program achieves blitting
between images in memory.
Consideration shown for some
additional functionality, such as
using double buffering, or
different depth buffers, although
these show limitations in their
implementation.

Program demonstrates a
solid implementation of
blitting and makes use of
multiple additional
features.

Program shows an excellent
implementation of blitting with a
range of implementations, such as
multiple depth buffers, colour keying
and alpha blending. Some animation
is also included with some
consideration given to compression.

7

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format
the document, although
coherence is sometimes hindered
by lack of a proper structure.
Grammar and/or punctuation
needs improvement.

Some presentation formatting is
evident and the document is
clear to follow. Occasional errors
in grammar and/or punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands how the sprite
blitting works.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain what the
program does but little or no
understanding is evident of how
it works. More needs to be
written about how sprite blitting
works and how it has been
implemented in their program.

Explanation is given as to how the
program works and it is evident
that the student understands the
basics of sprite blitting.

A good piece of
documentation that
explains the workings of
the program and how
their pathfinding
algorithm works.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the workings of
their pathfinding algorithm.

Grade:

/ 10

8

Developer Section 2C - Data Serialisation

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Program fails to run or
does not show
evidence that data has
been saved or can be
loaded.

Program shows an attempt to save
data but the data may not be able
to be read accurately. Data storage
or loading may is limited to a single
format and the code may show that
it would be difficult to adapt for
different formats

Program demonstrates saving
and reading of data with few
errors in re-loading of data.
Limitation is shown in the
scope of the system with
regards to reusability and how
often it is used within the
program.

A well-implemented
system that saves and
reads data with accuracy
in different formats.

An excellent system has been
implemented that allows for accurate
saving and reading of data in a range
of formats. Evidence that extra
formats could be added with little
additional work required.

9

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands how data
serialisation works in their
program.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain what the
program does but little or no
understanding is evident of how it
works. More needs to be written
about how data serialisation works
and how it has been implemented
in their program.

Explanation is given as to how
the program works and it is
evident that the student
understands the basics of what
data serialisation is.

A good piece of
documentation that
explains the workings of
the program and how
their data serialisation
implementation works.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the workings of
their data serialisation system.

Grade:

/ 10

10

Developer Section 2C - Procedural Generation

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Program fails to run or
there is no evidence
that there is any form
of procedural
generation included in
the program.

Some implementation of pre-
defined procedural generation is
evident although dynamic
generation while the program
running is not.

Data is successfully generated
within the program, although
the pseudo-random generator
may produce seemingly non-
random results.

Program uses an
algorithm to dynamically
generate of data values
while the program is
running.

Program uses procedural generation
in an effective way, implementing a
random number generator and using
fractals. At least some consideration
has been given to the optimisation of
the algorithm used to generate data.

11

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands how
procedural generation
works in their program.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain what the
program does but little or no
understanding is evident of how it
works. More needs to be written
about how procedural generation
works and how it has been
implemented in their program.

Explanation is given as to how
the program works and it is
evident that the student
understands the basics of what
procedural generation is.

A good piece of
documentation that
explains the workings of
the program and how
their procedural
generation works.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the workings of
procedural generation. Optimisation
of procedural generation algorithms
is also discussed.

Grade:

/ 10

12

Developer Section 2C - Memory Management

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Program fails to run or
there is little or no
evidence or memory
management.

Although the program attempts to
deal with the allocation of
resources, there are noticeable
errors in the produced solution.

The program allocates and
deallocates memory whilst the
program is running. Memory
leaks are not handled and
fragmentation has not been
dealt with.

The manager attempts to
implement a way to deal
with fragmentation that
occurs over time in the
program or is able to
“detect” leaks that may
occur.

The manager allocates and
deallocates resources using an
efficient choice for a search
algorithm. A solution is implemented
to deal with fragmentation and
memory leaks with a way to trace
back a memory leak to the source.

13

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands how
procedural generation
works in their program.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain what the
program does but little or no
understanding is evident of how it
works. More needs to be written
about memory management, its
implementation and how it is
evident in their program.

Explanation is given as to how
the program works and it is
evident that the student
understands the basics of
memory management.

A good piece of
documentation that
explains the workings of
the program and how
their memory manager
works.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the workings of
memory management. The student
also discusses fragmentation and
ways in which it can be dealt with.

Grade:

/ 10

14

Developer Section 3A – Working in 3D

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the program fulfils the
requirements.
20%

Game world fails to run
or has too little
functionality to meet
any of the
requirements.

Some features have been added to
the world although large omissions
noticeable and implemented
features are unfinished.

World shows progress
although there is still a distinct
lack of required features. Some
interaction implemented, such
as movement.

Project is largely complete
with most features
implemented, although
some may still require
completion. World is
interactive and
implemented features
show signs of polish.

Project is complete with all features
implemented and well polished.
Some creativity shown with
additional features implemented, or
some attempt made to string the
features together to make a game of
some sort.

15

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands the features
implemented in their game
world.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain how the
world works although
documentation lacks substance
necessary to demonstrate
understanding. Omission of readme
file or other key parts of the
documentation used to explain
what is implemented.

Explanation is given as to how
the game world functions and
it is evident that the student
understands the concepts of
3D games programming.

A good piece of
documentation that
explains the workings of
the game world and the
features within it.

Comprehensive documentation that
compliments the program and fully
explains the functionality, as well as
demonstrating the student’s full
understanding of the 3D
programming features implemented.

Grade:

/ 10

16

Developer Section 3B – Working in 3D Part 2

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the game fulfils the
requirements.
20%

Game fails to run or has
too little functionality
to meet any of the
requirements.

Part 1 has been attempted although
large omissions noticeable. Little or
no attempt has been made at
implementing other parts.
Gameplay is present but game is
incomplete.

Parts 1 and 2 mostly
implemented with some
attempt made at other parts.
Game shows structure and is
playable, although lacks polish.

Project shows a good deal
of completion with parts 1
– 3 largely complete and
progress made on other
parts. Game shows some
polish and can be largely
completed.

All parts implemented and the game
is well polished and playable from
start to finish.

17

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands the features
implemented in their game.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain how the
game and the features work
although documentation lacks
substance necessary to
demonstrate understanding.
Omission of readme file or other
key parts of the documentation
used to explain what is
implemented.

Explanation is given as to how
the game and the features
function and it is evident that
the student understands some
additional concepts of 3D
games programming.

A good piece of
documentation that
explains the workings of
the game and the features
within it and how it was
developed with mention
of bugs or issues that
remain.

Comprehensive documentation that
compliments the game and fully
explains the implemented features as
well as how the game developed and
explaining any issues that may still
remain in the program.

Grade:

/ 10

18

Developer Section 3C – Deep Sea Diver

 Unsatisfactory
2

Little or no evidence of
an attempt. Significant

rework required in
order to achieve a pass.

Needs improving
4

Work shows evidence of
understanding but needs some

revision in order to pass

Satisfactory
6

A pass, although the work
would benefit significantly

from improvements.

Clear pass
8

A sound piece of work
with very few flaws

Excellent
10

A high standard piece of work with
no significant flaws.

Code Presentation
Indentation, layout and
commenting of code. Use
of (appropriate) naming
conventions.
20%

No comments, little or
no indentation, code is
hard to follow,
variables are
unintuitive named.

Variables are named but may be
unclear as to what they are
supposed to represent. Code layout
and commenting is evident but may
be inconsistent or unclear.

Some attention has been paid
to the layout of the code but
the code would benefit from
being easier to read. Naming
conventions and indentation is
inconsistent or needs
improving. Comments are
reasonable but could be
improved to explain the code
better.

A good attempt at
presenting the code but
some inconsistencies in
the names of variables
and indentations. More
comments may be
beneficial or may need
more elaboration.

Code layout is clear, consistent,
properly indented and well
commented. Variables are named
consistently and are and prefixed
according to industry standard
naming conventions.

Programming quality
How well the code has
been written in order to
make the program run,
with particular focus on the
use of OO programming
and the use of accessors
and mutators.
20%

Program fails to run. Little or no evidence of any OO
programming, accessors/mutators
either unused or used wrongly.
Code is un-necessarily repeated.
Program suffers from poor coding.

Some evidence of code re-use
and accessors and mutators
have been implemented for
variable access. The program
runs fairly well but the code is
inefficiently written.

Well written code. Code is
mostly reused where
possible. Variables are
appropriately protected
and accessed through
accessors and mutators.
Program performance is
acceptable.

The code shows adherence to object-
orientated programming principles
with appropriate usage of accessors,
mutators and constant variables. The
program runs well and some attempt
has been made to optimise the code.

Program functionality
How the game fulfils the
requirements.
20%

Game fails to run or
shows no expansion on
previous work

Game shows some evidence of
additional features although these
are limited in number and lack
originality and scope and may not
work as intended.

Game shows some originality
and a variety of added
features, although these lack
polish and their functionality is
limited. Some additional work
may need to be done to make
the added features work as
intended.

A wide range of features
are implemented within
the game and the game
has been polished to
integrate these added
features. Steps have been
taken to customise the
look and feel of the game
to add originality.

Game is notably different from the
starting project and incorporates all
features mentioned in the brief.
Features work well and the game is
well polished.

19

Documentation
Presentation
Style, layout and format of
the document and spelling,
punctuation and grammar.
20%

Poor layout and
grammar, inconsistent
formatting and style
and unintuitive to
follow.

Some attempt made to format the
document, although coherence is
sometimes hindered by lack of a
proper structure. Grammar and/or
punctuation needs improvement.

Some presentation formatting
is evident and the document is
clear to follow. Occasional
errors in grammar and/or
punctuation.

A well laid out document
with only minor flaws, or
inconsistency, in
formatting. Only minor
and occasional errors in
spelling and punctuation.

Professionally prepared document
with a consistent layout and style.
No significant errors in punctuation
and grammar.

Evidence of understanding
through Documentation
How the documentation
shows that the student
understands the features
implemented in their game.
20%

No documentation
submitted or
documentation is
irrelevant to the
requirements.

An attempt to explain how the
game and the features work
although documentation lacks
substance necessary to
demonstrate understanding.
Omission of readme file or other
key parts of the documentation
used to explain what is
implemented.

Explanation is given as to how
the game and the features
function and it is evident that
the student understands some
additional concepts of 3D
games programming.

A good piece of
documentation that
explains the workings of
the game and the features
within it and how it was
developed with mention
of bugs or issues that
remain.

Comprehensive documentation that
compliments the game and fully
explains the implemented features as
well as how the game developed and
explaining any issues that may still
remain in the program.

Grade:

/ 10

