[Add] New memory management.

[Clean] Source code was messy, so I have given it a good clean.
This commit is contained in:
Rtch90 2012-06-02 21:54:35 +01:00
parent d16472c28e
commit 896b966530
45 changed files with 2291 additions and 2011 deletions

View File

@ -12,7 +12,6 @@ HEADERS += ../src/Libs/wglext.h \
../src/libUnuk/Engine/WorldManager.h \ ../src/libUnuk/Engine/WorldManager.h \
../src/libUnuk/Engine/ParticleEmitter.h \ ../src/libUnuk/Engine/ParticleEmitter.h \
../src/libUnuk/Engine/NPC.h \ ../src/libUnuk/Engine/NPC.h \
../src/libUnuk/Engine/MemManager.h \
../src/libUnuk/Engine/MemClass.h \ ../src/libUnuk/Engine/MemClass.h \
../src/libUnuk/Engine/Collision.h \ ../src/libUnuk/Engine/Collision.h \
../src/libUnuk/Engine/Character.h \ ../src/libUnuk/Engine/Character.h \
@ -49,11 +48,11 @@ HEADERS += ../src/Libs/wglext.h \
../src/libUnuk/System/MathBox.h \ ../src/libUnuk/System/MathBox.h \
../src/libUnuk/Engine/Pathfinding.h \ ../src/libUnuk/Engine/Pathfinding.h \
../src/libUnuk/UI/SavegameMenu.h \ ../src/libUnuk/UI/SavegameMenu.h \
../src/libUnuk/Engine/Spells.h ../src/libUnuk/Engine/Spells.h \
../src/libUnuk/Engine/MemManager.h
SOURCES += ../src/libUnuk/Engine/WorldManager.cpp \ SOURCES += ../src/libUnuk/Engine/WorldManager.cpp \
../src/libUnuk/Engine/ParticleEmitter.cpp \ ../src/libUnuk/Engine/ParticleEmitter.cpp \
../src/libUnuk/Engine/NPC.cpp \ ../src/libUnuk/Engine/NPC.cpp \
../src/libUnuk/Engine/MemManager.cpp \
../src/libUnuk/Engine/Collision.cpp \ ../src/libUnuk/Engine/Collision.cpp \
../src/libUnuk/Engine/Character.cpp \ ../src/libUnuk/Engine/Character.cpp \
../src/libUnuk/Sprite/TextureManager.cpp \ ../src/libUnuk/Sprite/TextureManager.cpp \
@ -86,4 +85,5 @@ SOURCES += ../src/libUnuk/Engine/WorldManager.cpp \
../src/libUnuk/UI/Bar.cpp \ ../src/libUnuk/UI/Bar.cpp \
../src/libUnuk/System/Vec2.cpp \ ../src/libUnuk/System/Vec2.cpp \
../src/libUnuk/UI/SavegameMenu.cpp \ ../src/libUnuk/UI/SavegameMenu.cpp \
../src/libUnuk/Engine/Spells.cpp ../src/libUnuk/Engine/Spells.cpp \
../src/libUnuk/Engine/MemManager.cpp

View File

@ -216,6 +216,7 @@ void Game::HandleInput(void) {
} }
void Game::UpdateGame(void) { void Game::UpdateGame(void) {
UpdateInput();
if(_ingameMenu.GetStatus() == false) { if(_ingameMenu.GetStatus() == false) {
_map.Update(); _map.Update();
_player->Update(); _player->Update();
@ -234,10 +235,11 @@ void Game::UpdateGame(void) {
} else { } else {
// :D // :D
} }
} }
void Game::Render(void) { void Game::Render(void) {
//SDL_FillRect(screen, NULL, 0); // You might want to clear the buffer! --konom | I don't want a blacked out ingame menu, save it for MainMenu. --Allanis //SDL_FillRect(screen, NULL, 0);
if(_ingameMenu.GetStatus() == false) { if(_ingameMenu.GetStatus() == false) {
_map.Render(); _map.Render();
_player->Render(); _player->Render();
@ -276,7 +278,7 @@ void Game::NewSavegame(const string savegameIDArg) {
TiXmlElement* saveElement = new TiXmlElement("save"); TiXmlElement* saveElement = new TiXmlElement("save");
TiXmlElement* nameElement = new TiXmlElement("name"); TiXmlElement* nameElement = new TiXmlElement("name");
TiXmlText* nameText = new TiXmlText("Allanis"); //TODO: replace with _player->GetName() when it works. --konom TiXmlText* nameText = new TiXmlText("Allanis"); //TODO: replace with _player->GetName() when it works.
nameElement->LinkEndChild(nameText); nameElement->LinkEndChild(nameText);
int spawnX; int spawnX;

View File

@ -1,9 +1,10 @@
#include "Player.h" #include "Player.h"
#include "Globals.h" #include "Globals.h"
#include "../libUnuk/UI/EventHistory.h" #include "../libUnuk/UI/EventHistory.h"
#include "../libUnuk/System/Input.h"
// Pixels * 60 / sec. // Pixels * 60 / sec.
const float Player::PLAYER_SPEED = Character::CHARACTER_SPEED + 0.5f; const float Player::PLAYER_SPEED = Character::CHARACTER_SPEED + 1.0f;
// Amount of Exp needed every level // Amount of Exp needed every level
const int Player::EXP_TABLE[MAX_LEVEL] = { const int Player::EXP_TABLE[MAX_LEVEL] = {

View File

@ -9,7 +9,9 @@
#include "../libUnuk/UI/SavegameMenu.h" #include "../libUnuk/UI/SavegameMenu.h"
#include "../libUnuk/Engine/NPC.h" #include "../libUnuk/Engine/NPC.h"
#include "../libUnuk/System/Debug.h" #include "../libUnuk/System/Debug.h"
#include "../libUnuk/System/Input.h"
#include "../libUnuk/Engine/MemClass.h" #include "../libUnuk/Engine/MemClass.h"
#include "Constants.h" #include "Constants.h"
#include "Globals.h" #include "Globals.h"
#include "Game.h" #include "Game.h"
@ -98,6 +100,10 @@ int WINAPI WinMain(HINSTANCE,HINSTANCE,LPSTR,int) {
Debug::logger->message("Creating mainmenu.."); Debug::logger->message("Creating mainmenu..");
MainMenu* menu = new MainMenu; MainMenu* menu = new MainMenu;
// Initiate input.
Debug::logger->message("Setting up I/O..");
CreateInput();
Debug::logger->message("\n----- Engine Initialization Complete -----"); Debug::logger->message("\n----- Engine Initialization Complete -----");
Debug::logger->message("\n----- Logic -----"); Debug::logger->message("\n----- Logic -----");
@ -134,6 +140,7 @@ int WINAPI WinMain(HINSTANCE,HINSTANCE,LPSTR,int) {
break; break;
} }
} }
//stringstream caption; //stringstream caption;
//caption << "Unuk - FPS: " << fps; //caption << "Unuk - FPS: " << fps;
@ -145,6 +152,8 @@ int WINAPI WinMain(HINSTANCE,HINSTANCE,LPSTR,int) {
SDL_FreeSurface(screen); SDL_FreeSurface(screen);
SDL_FreeSurface(errorTexture); SDL_FreeSurface(errorTexture);
DestroyInput();
SDL_Quit(); SDL_Quit();
TTF_Quit(); TTF_Quit();

View File

@ -46,21 +46,21 @@ public:
void OnAttack(void); void OnAttack(void);
// Overload new and delete operators to utilize MemManager. // Overload new and delete operators to utilize MemManager.
inline void* operator new(size_t size) { // inline void* operator new(size_t size) {
return gMemManager.Allocate(size); // return gMemManager.Allocate(size);
} // }
inline void operator delete(void* object) { // inline void operator delete(void* object) {
gMemManager.Free(object); // gMemManager.Free(object);
} // }
inline void* operator new [](size_t size) { // inline void* operator new [](size_t size) {
return gMemManager.Allocate(size); // return gMemManager.Allocate(size);
} // }
inline void operator delete [](void* object) { // inline void operator delete [](void* object) {
gMemManager.Free(object); // gMemManager.Free(object);
} // }
enum { enum {
FACING_UP, FACING_UP,

View File

@ -1,32 +0,0 @@
#pragma once
#include "MemManager.h"
extern MemManager gMemManager;
class MemClass {
public:
MemClass(void) : r(0), c(0) {}
MemClass(double a, double b): r(a), c(b) {}
inline void* operator new(size_t size) {
return gMemManager.Allocate(size);
}
inline void operator delete(void* object) {
gMemManager.Free(object);
}
inline void* operator new [](size_t size) {
return gMemManager.Allocate(size);
}
inline void operator delete [](void* object) {
gMemManager.Free(object);
}
private:
// Real part.
double r;
// Complex part.
double c;
};

View File

@ -1,206 +1,535 @@
#include "MemClass.h" #include <new>
#include <cassert>
#include <cstdio>
#ifdef _WIN32
#include <windows.h>
#endif
#include <malloc.h>
#include <string.h>
#include "MemManager.h" #include "MemManager.h"
MemManager gMemManager;
void BitMapEntry::SetBit(int position, bool flag) { // This is rather C'ish, it can't really be helped since using new/delete inside allocation
blocksAvailable += flag ? 1 : -1; // routines would be, well, no fun. This also excludes SDL containers.
int elementNo = position / INT_SIZE;
int bitNo = position % INT_SIZE;
if(flag)
bitMap[elementNo] = bitMap[elementNo] | (1 << bitNo);
else
bitMap[elementNo] = bitMap[elementNo] & ~(1 << bitNo);
}
void BitMapEntry::SetMultipleBits(int position, bool flag, int count) { // Don't use this here..
blocksAvailable += flag ? count : -count; #ifdef new
int elementNo = position / INT_SIZE; #undef new
int bitNo = position % INT_SIZE; #endif
int bitSize = (count <= INT_SIZE - bitNo) ? count : INT_SIZE - bitNo; // We will dump the report here..
SetRangeOfInt(&bitMap[elementNo], bitNo + bitSize - 1, bitNo, flag); const char logFileName[] = "../Bin/MemLeaks.log";
count -= bitSize;
if(!count) return;
int i = ++elementNo; // Longs are guaranteed to be 2 bits.
while(count >= 0) { typedef unsigned long uint32;
if(count <= INT_SIZE) {
SetRangeOfInt(&bitMap[i], count - 1, 0, flag); // Identifiers which are placed to allocated buffer (4-byte alignment)
const uint32 memPrefix = 0xBAADF00D;
const uint32 memPostfix = 0xBABE2BED;
const uint32 memNotUsed = 0xDEADC0DE;
// Identifiers for array / non array allocations / deleted allocations.
const uint32 nonArrayAllocation = 0x2BADF00D;
const uint32 arrayAllocation = 0xBAD4ACE2;
const uint32 invalidAllocation = 0x76543210;
// Amount. Be careful, this could be a memory overkill.
const int numberPrefix = 32; // 128 bytes.
const int numberPostfix = 32; // 128 bytes.
void RemoveMessages(void) {
#ifdef _WIN32
MSG msg = { 0 };
while(PeekMessage(&msg, 0, 0, 0, PM_REMOVE)) {
if(msg.message == WM_PAINT)
return; return;
} else
bitMap[i] = flag ? unsigned (-1) : 0;
count -= 32;
i++;
} }
#endif
} }
void BitMapEntry::SetRangeOfInt(int* element, int msb, int lsb, bool flag) { struct AllocationUnit {
if(flag) { // Just for convenience.
int mask = (unsigned(-1) << lsb) & (unsigned(-1) >> (INT_SIZE - msb - 1)); uint32* prefixPointer;
*element |= mask; uint32* postfixPointer;
} else { uint32* dataPointer;
int mask = (unsigned(-1) << lsb) & (unsigned(-1) >> (INT_SIZE - msb - 1));
*element &= ~mask; // Size with and withough manager extras.
} size_t requestedSize;
size_t overallSize;
// Catches mixing new[]/delete and new/delete[] changed from bool to int
// to catch problems with memory blocks allocated without using memory manager.
int arrayAllocated;
// Allocation info which may or may not be present.
char* allocatedFrom;
// Allocation was marked during last snapshot, therfore, it will not be shown
// at leak snapshot dump.
bool markedSnapshot;
};
AllocationUnit* CreateAllocationUnit(void) {
AllocationUnit* unit = static_cast<AllocationUnit*> (malloc(sizeof(AllocationUnit)));
unit->prefixPointer = 0;
unit->postfixPointer = 0;
unit->dataPointer = 0;
unit->requestedSize = 0;
unit->overallSize = 0;
unit->arrayAllocated = nonArrayAllocation;
unit->allocatedFrom = 0;
unit->markedSnapshot = false;
return unit;
} }
MemClass* BitMapEntry::FirstFreeBlock(size_t/* size*/) { void deleteAllocationUnit(AllocationUnit* unit) {
for(int i = 0; i < BIT_MAP_ELEMENTS; i++) { if(unit->allocatedFrom)
if(bitMap[i] == 0) free(unit->allocatedFrom);
// There aint any bits free. if(unit->prefixPointer)
continue; free(unit->prefixPointer);
unit->arrayAllocated = invalidAllocation;
// Yield the first bit position. This is a 1 free(unit);
// in an int from the right.
int result = bitMap[i] & -(bitMap[i]);
//void* address = 0;
int basePos = (INT_SIZE * i);
switch(result) {
// Make the corresponfing bit 0 so block is no longer free.
case 0x00000001: return ComplexObjectAddress(basePos + 0);
case 0x00000002: return ComplexObjectAddress(basePos + 1);
case 0x00000004: return ComplexObjectAddress(basePos + 2);
case 0x00000008: return ComplexObjectAddress(basePos + 3);
case 0x00000010: return ComplexObjectAddress(basePos + 4);
case 0x00000020: return ComplexObjectAddress(basePos + 5);
case 0x00000040: return ComplexObjectAddress(basePos + 6);
case 0x00000080: return ComplexObjectAddress(basePos + 7);
case 0x00000100: return ComplexObjectAddress(basePos + 8);
case 0x00000200: return ComplexObjectAddress(basePos + 9);
case 0x00000400: return ComplexObjectAddress(basePos + 10);
case 0x00000800: return ComplexObjectAddress(basePos + 11);
case 0x00001000: return ComplexObjectAddress(basePos + 12);
case 0x00002000: return ComplexObjectAddress(basePos + 13);
case 0x00004000: return ComplexObjectAddress(basePos + 14);
case 0x00008000: return ComplexObjectAddress(basePos + 15);
case 0x00010000: return ComplexObjectAddress(basePos + 16);
case 0x00020000: return ComplexObjectAddress(basePos + 17);
case 0x00040000: return ComplexObjectAddress(basePos + 18);
case 0x00080000: return ComplexObjectAddress(basePos + 19);
case 0x00100000: return ComplexObjectAddress(basePos + 20);
case 0x00200000: return ComplexObjectAddress(basePos + 21);
case 0x00400000: return ComplexObjectAddress(basePos + 22);
case 0x00800000: return ComplexObjectAddress(basePos + 23);
case 0x01000000: return ComplexObjectAddress(basePos + 24);
case 0x02000000: return ComplexObjectAddress(basePos + 25);
case 0x04000000: return ComplexObjectAddress(basePos + 26);
case 0x08000000: return ComplexObjectAddress(basePos + 27);
case 0x10000000: return ComplexObjectAddress(basePos + 28);
case 0x20000000: return ComplexObjectAddress(basePos + 29);
case 0x40000000: return ComplexObjectAddress(basePos + 30);
case 0x80000000: return ComplexObjectAddress(basePos + 31);
default: break;
} }
// Allocation information.
struct AllocationLink {
AllocationUnit* allocationUnit;
AllocationLink* next;
};
struct AllocationRoot {
AllocationLink* first;
};
// Hash data.
static const int hashSize = 3677; // Prime number. Big enough?
static AllocationRoot hashMap[hashSize] = { 0 };
static int allocationCount = 0; // Amount of allocations.
static int allocationMemory = 0; // Memory allocated.
static int PeakMemoryUsage = 0;
static int peakPointers = 0;
int CalculateHashIndex(const void* buffer) {
int value = reinterpret_cast<int> (buffer);
// Shift lower bits (alignment would kill coverage).
value >>= 4;
// Create index.
value %= hashSize;
return value;
} }
void AddAllocation(AllocationUnit* allocation) {
assert(allocation);
++allocationCount;
allocationMemory += allocation->requestedSize;
AllocationLink* link = static_cast<AllocationLink*> (malloc(sizeof(AllocationLink)));
link->allocationUnit = allocation;
link->next = 0;
int hashIndex = CalculateHashIndex(allocation->dataPointer);
if(hashMap[hashIndex].first == 0)
hashMap[hashIndex].first = link;
else {
// Push front.
link->next = hashMap[hashIndex].first;
hashMap[hashIndex].first = link;
}
if(allocationMemory > PeakMemoryUsage)
PeakMemoryUsage = allocationMemory;
if(allocationCount > peakPointers)
peakPointers = allocationCount;
}
AllocationUnit* FindAllocation(void* pointer) {
int hashIndex = CalculateHashIndex(pointer);
AllocationLink* current = hashMap[hashIndex].first;
while(current) {
if(current->allocationUnit->dataPointer == pointer)
return current->allocationUnit;
current = current->next;
}
RemoveMessages();
assert(!"Allocation not found. Uninitialized pointer?");
return 0; return 0;
} }
MemClass* BitMapEntry::ComplexObjectAddress(int pos) { void RemoveAllocation(AllocationUnit* allocation) {
SetBit(pos, false); if(allocationCount <= 0) {
return &((static_cast<MemClass*>(Head()) + (pos / INT_SIZE)) [INT_SIZE - (pos % INT_SIZE + 1)]); RemoveMessages();
assert(allocationCount > 0);
} }
void* BitMapEntry::Head(void) { int hashIndex = CalculateHashIndex(allocation->dataPointer);
return gMemManager.GetMemoryPoolList()[index];
AllocationLink* current = hashMap[hashIndex].first;
AllocationLink* previous = 0;
while(current) {
if(current->allocationUnit == allocation) {
// Remove.
if(previous)
previous->next = current->next;
else
hashMap[hashIndex].first = current->next;
--allocationCount;
allocationMemory -= current->allocationUnit->requestedSize;
// Free memory.
deleteAllocationUnit(current->allocationUnit);
free(current);
return;
}
previous = current;
current = current->next;
}
RemoveMessages();
assert(!"Allocation not found. Uninitialized pointer?");
} }
void* MemManager::Allocate(size_t size) { void DumpLeakReport(void) {
// None array. if(allocationCount > 0) {
if(size == sizeof(MemClass)) { DumpLeakSnapshot(true);
set<BitMapEntry*>::iterator freeMapI = _freeMapEntries.begin();
if(freeMapI != _freeMapEntries.end()) {
BitMapEntry* mapEntry = *freeMapI;
return mapEntry->FirstFreeBlock(size);
} else { } else {
AllocateChunkAndInitBitMap(); // Remove file.
_freeMapEntries.insert(&(_bitMapEntryList[_bitMapEntryList.size() - 1])); fclose(fopen(logFileName, "wt"));
return _bitMapEntryList[_bitMapEntryList.size() - 1].FirstFreeBlock(size); }
}
void TestIdentifiers(AllocationUnit* allocation) {
for(int i = 0; i < numberPrefix; ++i) {
if(allocation->prefixPointer[i] != memPrefix) {
RemoveMessages();
assert(!"Buffer prefix messed up!");
}
}
for(int i = 0; i < numberPostfix; ++i) {
if(allocation->postfixPointer[i] != memPostfix) {
RemoveMessages();
assert(!"Buffer postfix messed up!");
}
}
}
// After deinitialization, dump leak report on every deallocation.
struct InitializationTracker {
static bool programExiting;
InitializationTracker(void) {
programExiting = false;
}
~InitializationTracker(void) {
programExiting = true;
DumpLeakReport();
}
};
bool InitializationTracker::programExiting = false;
static InitializationTracker tracker;
void MarkLeakSnapshot(void) {
if(allocationCount > 0) {
int currentIndex = 0;
for(int i = 0; i < hashSize; ++i) {
AllocationLink* currentLink = hashMap[i].first;
while(currentLink != 0) {
currentLink->allocationUnit->markedSnapshot = true;
currentLink = currentLink->next;
}
}
}
}
void DumpLeakSnapshot(bool fromStart) {
if(allocationCount > 0) {
FILE* fp = fopen(logFileName, "wt");
if(fp == NULL) {
return;
}
if(!fromStart)
fprintf(fp, "(SNAPSHOT)\n\n");
fprintf(fp, "Peak memory usage: %d bytes\n", PeakMemoryUsage);
fprintf(fp, "Overall memory leaked: %d bytes\n", allocationMemory);
fprintf(fp, "Pointers left: %d\n\n", allocationCount);
int currentIndex = 0;
for(int i = 0; i < hashSize; ++i) {
AllocationLink* currentLink = hashMap[i].first;
while(currentLink != 0) {
if(!currentLink->allocationUnit->markedSnapshot || fromStart) {
//if(strcmp(currentLink->allocationUnit->allocatedFrom, "(???: line 0)") != 0)
if(!strstr(currentLink->allocationUnit->allocatedFrom, "???")) {
// Temp: show only over 2MB
//if(currentLink->allocationUnit->requestedSize > 1*1024*1024) {
fprintf(fp, "Allocation %d:\n", ++currentIndex);
fprintf(fp, "\tAllocated from: %s\n", currentLink->allocationUnit->allocatedFrom);
fprintf(fp, "\tAllocation size: %d bytes\n", currentLink->allocationUnit->requestedSize);
if(currentLink->allocationUnit->arrayAllocated == nonArrayAllocation)
fprintf(fp, "\tAllocated with new()\n");
else
fprintf(fp, "\tAllocated with new[]\n");
// To get the contents of some char array strings.
#define MEMMANAGER_MAX_PRINT_SIZE 80
int arraySize = currentLink->allocationUnit->requestedSize;
if(currentLink->allocationUnit->arrayAllocated == arrayAllocation && arraySize < MEMMANAGER_MAX_PRINT_SIZE) {
char* data = (char*)currentLink->allocationUnit->requestedSize;
char databuf[MEMMANAGER_MAX_PRINT_SIZE + 2];
bool noControlChars = true;
int j;
for(j = 0; j < arraySize; j++) {
if(data[j] == '\n' || data[j] == '\r')
databuf[j] = ' ';
else
databuf[j] = data[j];
if(data[j] < 32 && data[j] != '\n' && data[j] != '\r') {
if(data[j] != '\0') noControlChars = false;
break;
}
}
databuf[j] != '\0';
if(noControlChars) {
fprintf(fp, "\tData: \"%s\"\n", data);
}
}
fprintf(fp, "\n");
//}
}
}
currentLink = currentLink->next;
}
}
fclose(fp);
}
}
char debugAllocInfo[256 + 1] = { 0 };
int debugAllocatedSinceInfo = -1;
// Just a hack to add extra info to allocations.
void DebugSetAllocationInfo(const char* allocationInfo) {
if(allocationInfo == NULL)
debugAllocInfo[0] = '\0';
else
strncpy(debugAllocInfo, allocationInfo, 256);
debugAllocatedSinceInfo = 0;
}
// Operator new implementation.
void* operator new(size_t originalSize, const char* filename, int lineNumber, bool arrayAllocated) {
// Handle 0-byte request. we must return a unique pointer
// (or unique value actually).
if(originalSize == 0)
originalSize = 1;
// To 4-byte boundary (since our identifiers are unit32's).
if(int foo = originalSize % 4)
originalSize += 4 - foo;
// Make some room for prefix and postfix.
size_t size = originalSize;
size += numberPrefix * 4;
size += numberPostfix * 4;
// Yes, Infinate loop really is the way to go :)
while(true) {
AllocationUnit* allocation = CreateAllocationUnit();
void* buffer = malloc(size);
// Both have to succeed. We want to handle out-of-memory.
if((buffer) && (allocation)) {
char* info;
if(debugAllocInfo[0] != '\0' && debugAllocatedSinceInfo >= 0) {
info = static_cast<char*>(malloc(strlen(filename) + strlen(debugAllocInfo) + 60));
if(info) {
if(debugAllocatedSinceInfo == 0)
sprintf(info, "(%s: line %d)\t Info: \"%s\"", filename, lineNumber, debugAllocInfo);
else
sprintf(info, "(%s: line %d)\n\tInfo: (\"%s\", %d allocs ago)", filename, lineNumber, debugAllocInfo, debugAllocatedSinceInfo);
} }
} else { } else {
// Array. info = static_cast<char*> (malloc(strlen(filename) + 20));
if(_arrayMemoryList.empty()) { if(info) {
return AllocateArrayMemory(size); sprintf(info, "(%s: line %d)", filename, lineNumber);
}
}
// Fill in allocation info.
allocation->prefixPointer = static_cast<uint32*> (buffer);
allocation->dataPointer = allocation->prefixPointer + numberPrefix;
allocation->postfixPointer = allocation->dataPointer + (originalSize / 4);
allocation->allocatedFrom = info;
if(arrayAllocated)
allocation->arrayAllocated = arrayAllocation;
else
allocation->arrayAllocated = nonArrayAllocation;
allocation->overallSize = size;
allocation->requestedSize = originalSize;
// Fill in our identifiers.
for(int i = 0; i < numberPrefix; ++i)
allocation->prefixPointer[i] = memPrefix;
for(int i = 0; i < int(originalSize / 4); ++i)
allocation->dataPointer[i] = memNotUsed;
for(int i = 0; i < numberPostfix; ++i)
allocation->postfixPointer[i] = memPostfix;
AddAllocation(allocation);
return allocation->dataPointer;
}
// If only one of them succeeded, free it first.
if(buffer)
free(buffer);
if(allocation)
deleteAllocationUnit(allocation);
// Test error-handling functions.
std::new_handler globalHandler = std::set_new_handler(0);
std::set_new_handler(globalHandler);
// If we have one, try it. otherwise throw a bad allocation.
// (And hope for someone to catch it).
if(globalHandler)
(*globalHandler) ();
else
throw std::bad_alloc();
}
}
void operator delete(void* buffer, bool arrayDeleted) throw() {
// Deleting null-pointer is legal.
if(buffer == 0)
return;
AllocationUnit* allocation = FindAllocation(buffer);
if(!allocation) {
RemoveMessages();
assert(allocation);
}
// Test out of bounds.
TestIdentifiers(allocation);
// Test that the block was allocated by memory manager.
// Test array operator mixing.
if(allocation->arrayAllocated != arrayAllocation && allocation->arrayAllocated != nonArrayAllocation) {
RemoveMessages();
assert(!"Deleting block with invalid allocation type");
} else { } else {
map<void*, ArrayMemoryInfo>::iterator infoI = _arrayMemoryList.begin(); if((arrayDeleted && allocation->arrayAllocated == nonArrayAllocation) || (!arrayDeleted && allocation->arrayAllocated == arrayAllocation)) {
map<void*, ArrayMemoryInfo>::iterator infoEndI = _arrayMemoryList.end(); RemoveMessages();
assert(!"Mixed array and normal versions");
}
}
RemoveAllocation(allocation);
while(infoI != infoEndI) { // If quitting, dump report on each deallocation.
ArrayMemoryInfo info = (*infoI).second; if(InitializationTracker::programExiting == true)
if(info.StartPosition != 0) DumpLeakReport();
// Only search the memory blocks where allocation }
// is done from first byte.
continue;
else {
BitMapEntry* entry = &_bitMapEntryList[info.memPoolListIndex];
if(entry->blocksAvailable < (size / sizeof(MemClass)))
return AllocateArrayMemory(size);
else {
info.StartPosition = BIT_MAP_SIZE - entry->blocksAvailable;
info.Size = size / sizeof(MemClass);
MemClass* baseAddress = static_cast<MemClass*>(_memoryPoolList[info.memPoolListIndex]) + info.StartPosition;
_arrayMemoryList[baseAddress] = info; void* operator new(size_t size, const char* filename, int lineNumber) throw(std::bad_alloc) {
SetMultipleBlockBits(&info, false); return operator new(size, filename, lineNumber, false);
}
void* operator new(size_t size) throw(std::bad_alloc) {
return operator new(size, "???", 0, false);
}
void* operator new[](size_t size, const char* filename, int lineNumber) throw(std::bad_alloc) {
return operator new(size, filename, lineNumber, true);
}
void* operator new[](size_t size) throw(std::bad_alloc) {
return operator new(size, "???", 0 , true);
}
void operator delete(void* buffer) throw() {
operator delete(buffer, false);
}
void operator delete[](void* buffer) throw() {
operator delete(buffer, true);
}
return baseAddress; void MemManager::SetFailingPercentage(int percentage) {
} }
}
void MemManager::ValidatePointer(void* pointer) {
AllocationUnit* allocation = FindAllocation(pointer);
if(!allocation) {
RemoveMessages();
assert(allocation);
return;
}
// Test out-of-bounds.
TestIdentifiers(allocation);
}
void MemManager::ValidateAllPointers(void) {
for(int i = 0; i < hashSize; ++i) {
AllocationLink* currentLink = hashMap[i].first;
while(currentLink != 0) {
if(currentLink)
TestIdentifiers(currentLink->allocationUnit);
currentLink = currentLink->next;
} }
} }
} }
int MemManager::AmountOfMemoryAllocated(void* pointer, bool includeManagerExtra) {
return 0; return 0;
} }
void* MemManager::AllocateArrayMemory(size_t size) { int MemManager::AmountOfMemoryInUse(void* pointer) {
void* chunkAddress = AllocateChunkAndInitBitMap(); int result = 0;
ArrayMemoryInfo info;
info.memPoolListIndex = _memoryPoolList.size() - 1; for(int i = 0; i < hashSize; ++i) {
info.StartPosition = 0; AllocationLink* currentLink = hashMap[i].first;
info.Size = size / sizeof(MemClass); while(currentLink != 0) {
_arrayMemoryList[chunkAddress] = info; if(currentLink)
SetMultipleBlockBits(&info, false); result += currentLink->allocationUnit->requestedSize;
return chunkAddress; currentLink = currentLink->next;
}
}
return result;
} }
void* MemManager::AllocateChunkAndInitBitMap(void) { void MemManager::LogStatistics(const char* filename) {
BitMapEntry mapEntry;
MemClass* memoryBeginAddress = reinterpret_cast<MemClass*>(new char[sizeof(MemClass) * BIT_MAP_SIZE]);
_memoryPoolList.push_back(memoryBeginAddress);
mapEntry.index = _memoryPoolList.size() - 1;
_bitMapEntryList.push_back(mapEntry);
return memoryBeginAddress;
} }
void MemManager::Free(void* object) { void MemManager::LogUnusedPointers(const char* filename, float freePercentage) {
if(_arrayMemoryList.find(object) == _arrayMemoryList.end())
// Simple block deletion.
SetBlockBit(object, true);
else {
// Memory block deletion.
ArrayMemoryInfo *info = &_arrayMemoryList[object];
SetMultipleBlockBits(info, true);
}
} }
void MemManager::SetBlockBit(void* object, bool flag) { int MemManager::AmountOfMemoryInUse(bool includeManagerExta) {
int i = _bitMapEntryList.size() - 1; return allocationMemory;
for(; i >= 0; i--) {
BitMapEntry* bitMap = &_bitMapEntryList[i];
if((bitMap->Head() <= object) && (&(static_cast<MemClass*>(bitMap->Head()))[BIT_MAP_SIZE - 1] >= object)) {
int position = static_cast<MemClass*>(object)- static_cast<MemClass*>(bitMap->Head());
bitMap->SetBit(position, flag);
flag ? bitMap->blocksAvailable++ : bitMap->blocksAvailable--;
}
}
} }
void MemManager::SetMultipleBlockBits(ArrayMemoryInfo* info, bool flag) { int MemManager::AmountOfPeakMemoryInUse(bool includeManagerExtra) {
BitMapEntry* mapEntry = &_bitMapEntryList[info->memPoolListIndex]; return 0;
mapEntry->SetMultipleBits(info->StartPosition, flag, info->Size);
} }
vector<void*>& MemManager::GetMemoryPoolList(void) { int MemManager::AmountOfMemoryAllocations(void) {
return _memoryPoolList; return allocationCount;
}
int MemManager::AmountOfPeakMemoryAllocations(void) {
return 0;
} }

View File

@ -1,88 +1,53 @@
#pragma once #pragma once
#include <iostream>
#include <vector>
#include <string>
#include <string.h>
#include <vector>
#include <set>
#include <map>
#include <bitset>
using namespace std;
const int BIT_MAP_SIZE = 1024; #ifndef INCLUDED_NEW
const int INT_SIZE = sizeof(int) * 8; #define INCLUDED_NEW
const int BIT_MAP_ELEMENTS = BIT_MAP_SIZE / INT_SIZE; #include <new>
#endif
/* class MemManager {
* Memory Allocation Pattern. // Not implemented.
* 11111111 11111111 11111111 MemManager(void);
* 11111110 11111111 11111111 ~MemManager(void);
* 11111100 11111111 11111111
*
* If all bits for the first section becomes zero go to next section.
*
* 00000000 11111111 11111111
* 00000000 11111110 11111111
* 00000000 11111100 11111111
* 00000000 11111000 11111111
*
* The lookup inside the map becomes 0(1) for the first available free block.
*/
class MemClass;
typedef struct BitMapEntry {
int index;
int blocksAvailable;
int bitMap[BIT_MAP_SIZE];
public: public:
BitMapEntry():blocksAvailable(BIT_MAP_SIZE) { // Affect behavior.
// All blocks are free to begin with and bit value 1 static void SetFailingPercentage(int percentage);
// in the map denotes available blocks.
memset(bitMap, 0xff, BIT_MAP_SIZE / sizeof(char));
}
void SetBit(int position, bool flag); // Pointers.
void SetMultipleBits(int position, bool flag, int count); static void ValidatePointer(void* pointer);
void SetRangeOfInt(int* element, int msb, int lsb, bool flag); static void ValidateAllPointers(void);
MemClass* FirstFreeBlock(size_t size); static int AmountOfMemoryAllocated(void* pointer, bool includeManagerExtra = false);
MemClass* ComplexObjectAddress(int pos); static int AmountOfMemoryInUse(void* pointer);
void* Head(void);
} BitMapEntry;
typedef struct ArrayInfo { // Logging.
int memPoolListIndex; static void LogStatistics(const char* filename);
int StartPosition; static void LogUnusedPointers(const char* filename, float freePercentage);
int Size;
} ArrayMemoryInfo;
class IMemManager { // Memory statistics.
public: static int AmountOfMemoryInUse(bool includeManagerExta = false);
virtual void* Allocate(size_t size) = 0; static int AmountOfPeakMemoryInUse(bool includeManagerExtra = false);
virtual void Free(void* object) = 0; static int AmountOfMemoryAllocations(void);
static int AmountOfPeakMemoryAllocations(void);
}; };
class MemManager : public IMemManager { // Quick hack to get some extra information about allocations.
public: void DebugSetAllocationInfo(const char* allocationInfo);
MemManager(void) {} void DumpLeakSnapshot(bool fromStart = false);
~MemManager(void) {} void MarkLeakSnapshot(void);
void* Allocate(size_t size); // Global operators.
void Free(void* object); void* operator new(size_t size, const char* filename, int lineNumber) throw(std::bad_alloc);
vector<void*>& GetMemoryPoolList(void); void* operator new(size_t size) throw(std::bad_alloc);
void* operator new[](size_t size, const char* filename, int lineNumber) throw(std::bad_alloc);
void* operator new[](size_t size) throw(std::bad_alloc);
void operator delete(void* buffer) throw();
void operator delete[](void* buffer) throw();
private: // I don't think there are any compilers that don't define these, but just in case.
void* AllocateArrayMemory(size_t size); #ifndef __FILE__
void* AllocateChunkAndInitBitMap(void); #define __FILE__ "???"
void SetBlockBit(void* object, bool flag); #endif
void SetMultipleBlockBits(ArrayMemoryInfo* info, bool flag); #ifndef __LINE__
#define __LINE__ 0
// The following lists will maintain one to one correspondace #endif
// and should be the same size.
vector<void*> _memoryPoolList;
vector<BitMapEntry> _bitMapEntryList;
set<BitMapEntry*> _freeMapEntries;
map<void*, ArrayMemoryInfo> _arrayMemoryList;
};

View File

@ -31,6 +31,9 @@ bool CreateInput(void) {
memcpy(keyboard.keys, tempKeys, sizeof(char) * keyboard.keycount); memcpy(keyboard.keys, tempKeys, sizeof(char) * keyboard.keycount);
mouse.buttons = SDL_GetMouseState(&mouse.dx, &mouse.dy); mouse.buttons = SDL_GetMouseState(&mouse.dx, &mouse.dy);
if(&keyboard > 0 || &mouse > 0){
Debug::logger->message("Input device registered");
}
return true; return true;
} }
@ -79,4 +82,5 @@ bool MouseStillUp(int button) { return(!_curr_mouse(button) && !_old_mouse(b
void DestroyInput(void) { void DestroyInput(void) {
free(keyboard.keys); free(keyboard.keys);
free(keyboard.oldKeys); free(keyboard.oldKeys);
Debug::logger->message("Input device destroyed");
} }

View File

@ -1,6 +1,8 @@
#pragma once #pragma once
#include <SDL/SDL.h> #include <SDL/SDL.h>
#include "../System/Debug.h"
typedef struct mouse_s { typedef struct mouse_s {
int dx, dy; int dx, dy;
int oldx, oldy; int oldx, oldy;