[Add] Lua function calls.

This commit is contained in:
Allanis 2013-02-03 14:00:19 +00:00
parent 57dc51fb91
commit b3c21a5c4e
10 changed files with 263 additions and 60 deletions

14
dat/SHIP Normal file
View File

@ -0,0 +1,14 @@
// ================
// NOTES.
// ================
Units:
Thrust, speed is in pixels/second.
turn is in degrees per half a second.
energy, armor and shield regen are in points a minute.
crew is in, uh.. people.
mass is in tons.
cargo and weapon capacity are int tons.

View File

@ -3,7 +3,7 @@
<fleet name="Test"> <fleet name="Test">
<faction>2</faction> <faction>2</faction>
<pilots> <pilots>
<pilot chance='100'>Mr. Test</pilot> <pilot chance='100'>Miss. Test</pilot>
</pilots> </pilots>
</fleet> </fleet>
<fleet name="Merchant Ship"> <fleet name="Merchant Ship">

214
src/ai.c
View File

@ -3,6 +3,8 @@
#include <lauxlib.h> #include <lauxlib.h>
#include <lualib.h> #include <lualib.h>
#include <math.h>
#include "def.h" #include "def.h"
#include "log.h" #include "log.h"
#include "pilot.h" #include "pilot.h"
@ -25,19 +27,31 @@
// Call the AI function with name f. // Call the AI function with name f.
#define AI_LCALL(f) (lua_getglobal(L, f), lua_call(L, 0, 0)) #define AI_LCALL(f) (lua_getglobal(L, f), lua_call(L, 0, 0))
// Don't run the function if (n) params aren't passed.
#define MIN_ARGS(n) if(lua_gettop(L) < n) return 0
static int ai_minbrakedist(lua_State* L); // Minimal breaking distance. static int ai_minbrakedist(lua_State* L); // Minimal breaking distance.
static int ai_accel(lua_State* L); // Accelerate. static int ai_accel(lua_State* L); // Accelerate.
// Basic task. // Internal C routines.
// name : Tasks name (Lua function.) static void ai_freetask(Task* t);
// target : Target, this will depend on the task itself. // Ai routines for Lua.
typedef struct { // Tasks.
char* name; static int ai_pushtask(lua_State* L); // pushtask(string, number/pointer, number)
union { static int ai_poptask(lua_State* L); // poptask()
void* target; static int ai_taskname(lua_State* L); // Number taskname.
unsigned int ID; // Consult values.
}; static int ai_gettarget(lua_State* L); // Pointer gettarget()
} Task; static int ai_gettargetid(lua_State* L); // Number gettargetis()
static int ai_getdistance(lua_State* L); // Number getdist(Vec2)
static int ai_getpos(lua_State* L); // getpos(number/pilot)
static int ai_minbrakedist(lua_State* L); // Number minbrakedist()
// Movement.
static int ai_accel(lua_State* L); // accel(number); nuimber <= 1.
static int ai_turn(lua_State* L); // turn(number); abs(number) <= 1.
static int ai_face(lua_State* L); // face(number/pointer)
// Misc.
static int ai_createvect(lua_State* L); // createvect(number, number)
// Global Lua interpreter. // Global Lua interpreter.
static lua_State* L = NULL; static lua_State* L = NULL;
@ -52,11 +66,24 @@ int ai_init(void) {
if(L == NULL) if(L == NULL)
return -1; return -1;
// Register C funstions in Lua. // Open the standard Lua libraries.
lua_register(L, "minbrakedist", ai_minbrakedist); luaL_openlibs(L);
lua_register(L, "accel", ai_accel);
if(luaL_dofile(L, "ai_test.lua") != 0) { // Register C funstions in Lua.
lua_register(L, "pushtask", ai_pushtask);
lua_register(L, "poptask", ai_poptask);
lua_register(L, "taskname", ai_taskname);
lua_register(L, "gettarget", ai_gettarget);
lua_register(L, "gettargetid", ai_gettargetid);
lua_register(L, "getdistance", ai_getdistance);
lua_register(L, "getpos", ai_getpos);
lua_register(L, "minbrakedist", ai_minbrakedist);
lua_register(L, "accel", ai_accel);
lua_register(L, "turn", ai_turn);
lua_register(L, "face", ai_face);
lua_register(L, "createvect", ai_createvect);
if(luaL_dofile(L, "../scripts/ai/test.lua") != 0) {
WARN("Unable to load AI file: %s", "ai_test.lua"); WARN("Unable to load AI file: %s", "ai_test.lua");
return -1; return -1;
} }
@ -72,41 +99,184 @@ void ai_exit(void) {
void ai_think(Pilot* pilot) { void ai_think(Pilot* pilot) {
cur_pilot = pilot; // Set current pilot being processed. cur_pilot = pilot; // Set current pilot being processed.
pilot_acc = pilot_turn = 0.; // Clean up some variables. pilot_acc = pilot_turn = 0.; // Clean up some variables.
if(pilot->action == NULL) { if(cur_pilot->task == NULL)
// Idle git! // Idle git!
AI_LCALL("control"); AI_LCALL("control");
} else
// Pilot has a currently running task.
AI_LCALL(cur_pilot->task->name);
// Make sure pilot_acc and pilot_turn are legal moves.
if(pilot_acc > 1.) pilot_acc = 1.; // Value must be <= 1.
if(pilot_turn > 1.) pilot_turn = 1.; // Value must be between -1 and 1.
else if(pilot_turn < -1.) pilot_turn = -1.;
cur_pilot->solid->dir_vel = 0.; cur_pilot->solid->dir_vel = 0.;
if(pilot_turn) if(pilot_turn) // Set the turning velocity.
cur_pilot->solid->dir_vel -= cur_pilot->ship->turn * pilot_turn; cur_pilot->solid->dir_vel -= cur_pilot->ship->turn * pilot_turn;
vect_pset(&cur_pilot->solid->force, cur_pilot->ship->thrust * pilot_acc, cur_pilot->solid->dir); vect_pset(&cur_pilot->solid->force, cur_pilot->ship->thrust * pilot_acc, cur_pilot->solid->dir);
} }
// =====================
// INTERNAL C FUNCTIONS.
// =====================
// Free the task.
static void ai_freetask(Task* t) {
if(t->next) ai_freetask(t->next); // Woot, recursive freeing!
if(t->name) free(t->name);
if(t->target) free(t->target);
free(t);
}
// ======================================================== // ========================================================
// C functions to call from Lua. // C functions to call from Lua.
// ----------------------------- // ========================================================
// Push the current stack.
static int ai_pushtask(lua_State* L) {
int pos;
if(lua_isnumber(L, 1)) pos = (int) lua_tonumber(L, 1);
else return 0; // Invalid param.
Task* t = MALLOC_L(Task);
t->name = (lua_isstring(L, 2)) ? strdup((char*) lua_tostring(L, 2)) : NULL;
t->next = NULL;
if(lua_gettop(L) > 2) {
if(lua_isnumber(L, 3))
t->ID = (unsigned int) lua_tonumber(L, 3);
else if(lua_islightuserdata(L, 3))
t->target = (void*)lua_topointer(L, 3);
}
if(cur_pilot->task == NULL) // No other tasks.
cur_pilot->task = t;
else if(pos == 1) {
// Put at the end.
Task* pointer;
for(pointer = cur_pilot->task; pointer->next; pointer = pointer->next);
pointer->next = t;
} else {
// Default put at the beginning.
t->next = cur_pilot->task;
cur_pilot->task = t;
}
return 0;
}
// Pop the current task.
static int ai_poptask(lua_State* L) {
Task* t = cur_pilot->task;
cur_pilot->task = t->next;
t->next = NULL;
ai_freetask(t);
return 0;
}
// Grab the current tasks name.
static int ai_taskname(lua_State* L) {
if(cur_pilot->task) lua_pushstring(L, cur_pilot->task->name);
else lua_pushnil(L);
return 1;
}
// Grab the targer pointer.
static int ai_gettarget(lua_State* L) {
lua_pushlightuserdata(L, cur_pilot->task->target);
return 1;
}
// Get the ID.
static int ai_gettargetid(lua_State* L) {
lua_pushnumber(L, cur_pilot->task->ID);
return 1;
}
// Get the distance from the pointer.
static int ai_getdistance(lua_State* L) {
MIN_ARGS(1);
Vec2* vect = (Vec2*)lua_topointer(L,1);
lua_pushnumber(L, MOD(vect->x-cur_pilot->solid->pos.x, vect->y-cur_pilot->solid->pos.y));
return 1;
}
// Get the pilots position.
static int ai_getpos(lua_State* L) {
Pilot* p;
if(lua_isnumber(L, 1)) p = get_pilot((int)lua_tonumber(L,1)); // Pilot ID.
else if(lua_islightuserdata(L, 1)) p = (Pilot*)lua_topointer(L, 1); // Pilot pointer.
else p = cur_pilot; // Default to ones self.
lua_pushlightuserdata(L, &p->solid->pos);
return 1;
}
// ========================================================
// Get the minimum braking distance. // Get the minimum braking distance.
// //
// Braking vel ==> v*t = 0.5 a * t^2 => t = 2*v / a // Braking vel ==> 0 = v - a*dt
// Add turn around time (to initial velocity) : // Add turn around time (to initial velocity) :
// ==> 180.*360./cur_pilot->ship->turn // ==> 180.*360./cur_pilot->ship->turn
// Add it to general euler equation x = v*t + 0.5 * a * t^2 // Add it to general euler equation x = v*t + 0.5 * a * t^2
// Have fun. // Have fun.
// ======================================================== // ========================================================
static int ai_minbrakedist(lua_State* L) { static int ai_minbrakedist(lua_State* L) {
double time = 2. * VMOD(cur_pilot->solid->vel) / double time = VMOD(cur_pilot->solid->vel) /
(cur_pilot->ship->thrust / cur_pilot->solid->mass); (cur_pilot->ship->thrust / cur_pilot->solid->mass);
double dist = VMOD(cur_pilot->solid->vel) * (time + 0.5 * (180. * 360. / cur_pilot->ship->turn)) - double dist = VMOD(cur_pilot->solid->vel) * (time + cur_pilot->ship->turn/360.) -
0.5 * (cur_pilot->ship->thrust / cur_pilot->solid->mass)*time*time; 0.5 * (cur_pilot->ship->thrust / cur_pilot->solid->mass)*time*time;
lua_pushnumber(L, dist); // return lua_pushnumber(L, dist); // return
return 1; return 1;
} }
// Accelerate the pilot based on a param.
static int ai_accel(lua_State* L) { static int ai_accel(lua_State* L) {
pilot_acc = (lua_isnumber(L, 1)) ? (double)lua_tonumber(L, 1) : 1.; MIN_ARGS(1);
pilot_acc = (lua_isnumber(L, 1)) ? ABS((double)lua_tonumber(L, 1)) : 1.;
return 0; return 0;
} }
// Turn the pilot based on a param.
static int ai_turn(lua_State* L) {
MIN_ARGS(1);
pilot_turn = (lua_isnumber(L, 1)) ? (double)lua_tonumber(L, 1) : 0.;
return 0;
}
// Face the target.
static int ai_face(lua_State* L) {
MIN_ARGS(1);
Vec2* v; // Grab the position to face.
if(lua_isnumber(L,1)) v = &get_pilot((unsigned int)lua_tonumber(L,1))->solid->pos;
else if(lua_islightuserdata(L,1)) v = (Vec2*)lua_topointer(L,1);
double mod;
if(lua_gettop(L) > 1 && lua_isnumber(L,2))
switch((int)lua_tonumber(L,2)) {
case 1: mod *= -1; break;
case 2: break;
}
pilot_turn = mod * angle_diff(cur_pilot->solid->dir, vect_angle(&cur_pilot->solid->pos, v));
return 0;
}
// Create a vector.
static int ai_createvect(lua_State* L) {
MIN_ARGS(2);
Vec2* v = MALLOC_L(Vec2);
double x = (lua_isnumber(L, 1)) ? (double)lua_tonumber(L,1) : 0.;
double y = (lua_isnumber(L, 2)) ? (double)lua_tonumber(L,2) : 0.;
vect_cset(v, x, y);
lua_pushlightuserdata(L, (void*)v);
return 1;
}

View File

@ -1,5 +1,16 @@
#pragma once #pragma once
struct Task {
struct Task* next;
char* name;
union {
void* target; // Vec2 etc.
unsigned int ID; // Pilot ID etc.
};
};
typedef struct Task Task;
int ai_init(void); int ai_init(void);
void ai_exit(void); void ai_exit(void);

View File

@ -4,7 +4,6 @@
#define CALLOC_L(type)(calloc(1, sizeof(type))) #define CALLOC_L(type)(calloc(1, sizeof(type)))
#define ABS(X) ((X<0)?-X:X) #define ABS(X) ((X<0)?-X:X)
#define FABS(X) ((X<0.)?-X:X)
#define DATA "data" #define DATA "data"

View File

@ -4,12 +4,21 @@
#include "physics.h" #include "physics.h"
#ifndef M_PI // ================
#define M_PI 3.14159265358979323846f // MISC
#endif // ================
double angle_diff(const double ref, double a) {
if(a < M_PI) a += 2*M_PI;
double d = fmod((a-ref), 2*M_PI);
return (d <= M_PI) ? d : d - 2*M_PI;
}
// ================
// VEC2
// ================
// Set the vector value using cartesian coords. // Set the vector value using cartesian coords.
void vect_cset(Vec2* v, double x, double y) { void vect_cset(Vec2* v, const double x, const double y) {
v->x = x; v->x = x;
v->y = y; v->y = y;
v->mod = MOD(x,y); v->mod = MOD(x,y);
@ -17,7 +26,7 @@ void vect_cset(Vec2* v, double x, double y) {
} }
// Set the vector value using polar coords. // Set the vector value using polar coords.
void vect_pset(Vec2* v, double mod, double angle) { void vect_pset(Vec2* v, const double mod, const double angle) {
v->mod = mod; v->mod = mod;
v->angle = angle; v->angle = angle;
v->x = v->mod*cos(v->angle); v->x = v->mod*cos(v->angle);
@ -37,6 +46,16 @@ void vectnull(Vec2* v) {
v->x = v->y = v->mod = v->angle = 0.; v->x = v->y = v->mod = v->angle = 0.;
} }
// Get the direction pointed to by two vectors (from ref to v).
double vect_angle(const Vec2* ref, const Vec2* v) {
return ANGLE(VX(*v)-VX(*ref), VY(*v)-VY(*ref));
}
// ================
// SOLID!
// ================
// ==Update method.======================================== // ==Update method.========================================
// d^2 x(t) / d t^2 = a, a = constant (acceleration) // d^2 x(t) / d t^2 = a, a = constant (acceleration)
// x'(0) = v, x(0) = p // x'(0) = v, x(0) = p
@ -50,7 +69,7 @@ void vectnull(Vec2* v) {
#if 0 // Simply commenting this out to avoid silly warnings. #if 0 // Simply commenting this out to avoid silly warnings.
static void simple_update(Solid* obj, const double dt) { static void simple_update(Solid* obj, const double dt) {
// Make sure angle doesn't flip. // Make sure angle doesn't flip.
obj->dir += obj->dir_vel/360.*dt; obj->dir += M_PI/360.*obj->dir_vel*dt;
if(obj->dir > 2*M_PI) obj->dir -= 2*M_PI; if(obj->dir > 2*M_PI) obj->dir -= 2*M_PI;
if(obj->dir < 0.) obj->dir += 2*M_PI; if(obj->dir < 0.) obj->dir += 2*M_PI;
@ -100,7 +119,7 @@ static void simple_update(Solid* obj, const double dt) {
#define RK4_MIN_H 0.01 // Minimal pass we want. #define RK4_MIN_H 0.01 // Minimal pass we want.
static void rk4_update(Solid* obj, const double dt) { static void rk4_update(Solid* obj, const double dt) {
// Make sure angle doesn't flip. // Make sure angle doesn't flip.
obj->dir += obj->dir_vel/360.0*dt; obj->dir += M_PI/360.*obj->dir_vel*dt;
if(obj->dir > 2*M_PI) obj->dir -= 2*M_PI; if(obj->dir > 2*M_PI) obj->dir -= 2*M_PI;
if(obj->dir < 0.0) obj->dir += 2*M_PI; if(obj->dir < 0.0) obj->dir += 2*M_PI;
@ -123,20 +142,20 @@ static void rk4_update(Solid* obj, const double dt) {
for(i = 0; i < N; i++) { for(i = 0; i < N; i++) {
// X component. // X component.
tx = ix = vx; tx = ix = vx;
tx += 2*ix + h*tx; tx += 2.*ix + h*tx;
tx += 2*ix + h*tx; tx += 2.*ix + h*tx;
tx += ix + h*tx; tx += ix + h*tx;
tx *= h/6; tx *= h/6.;
px += tx; px += tx;
vx += ax*h; vx += ax*h;
// Y component. // Y component.
ty = iy = vy; ty = iy = vy;
ty += 2*(iy + h/2*ty); ty += 2.*(iy + h/2.*ty);
ty += 2*(iy + h/2*ty); ty += 2.*(iy + h/2.*ty);
ty += iy +h*ty; ty += iy +h*ty;
ty *= h/6; ty *= h/6.;
py += ty; py += ty;
vy += ay*h; vy += ay*h;
@ -153,8 +172,8 @@ static void rk4_update(Solid* obj, const double dt) {
void solid_init(Solid* dest, const double mass, const Vec2* vel, const Vec2* pos) { void solid_init(Solid* dest, const double mass, const Vec2* vel, const Vec2* pos) {
dest->mass = mass; dest->mass = mass;
dest->force.mod = 0; vect_cset(&dest->force, 0., 0.);
dest->dir = 0; dest->dir = 0.;
if(vel == NULL) vectnull(&dest->vel); if(vel == NULL) vectnull(&dest->vel);
else vectcpy(&dest->vel, vel); else vectcpy(&dest->vel, vel);

View File

@ -6,8 +6,11 @@
#define VMOD(v) ((v).mod) #define VMOD(v) ((v).mod)
#define VANGLE(v) ((v).angle) #define VANGLE(v) ((v).angle)
#define MOD(x,y) (sqrt(x*x + y*y)) #define MOD(x,y) (sqrt((x)*(x) + (y)*(y)))
#define ANGLE(x,y)((x==0.) ? 0. : ((x<0.)?atan(y/x)+M_PI:atan(y/x))) #define ANGLE(x,y)(((x)==0.) ? 0. : (((x)<0.)?atan((y)/(x))+M_PI:atan((y)/(x))))
// Misc
double angle_diff(const double ref, double a);
// Base of 2D vectors. // Base of 2D vectors.
typedef struct { typedef struct {
@ -16,10 +19,11 @@ typedef struct {
} Vec2; } Vec2;
// Vector manupulation. // Vector manupulation.
void vect_cset(Vec2* v, double x, double y); void vect_cset(Vec2* v, const double x, const double y);
void vect_pset(Vec2* v, double mod, double angle); void vect_pset(Vec2* v, const double mod, const double angle);
void vectcpy(Vec2* dest, const Vec2* src); void vectcpy(Vec2* dest, const Vec2* src);
void vectnull(Vec2* v); void vectnull(Vec2* v);
double vect_angle(const Vec2* ref, const Vec2* v);
// Describe any solid in 2D space. // Describe any solid in 2D space.
struct Solid { struct Solid {

View File

@ -83,7 +83,7 @@ void pilot_init(Pilot* pilot, Ship* ship, char* name, const Vec2* vel, const Vec
pilot->energy = ship->energy; pilot->energy = ship->energy;
// Initially idle. // Initially idle.
pilot->action = NULL; pilot->task = NULL;
if(flags & PILOT_PLAYER) { if(flags & PILOT_PLAYER) {
pilot->think = (void*)player_think; // Players don't need to thing! :P pilot->think = (void*)player_think; // Players don't need to thing! :P

View File

@ -1,25 +1,11 @@
#pragma once #pragma once
#include "def.h" #include "def.h"
#include "physics.h" #include "physics.h"
#include "ai.h"
#include "ship.h" #include "ship.h"
#define PILOT_PLAYER 1 // Pilot is a player. #define PILOT_PLAYER 1 // Pilot is a player.
// =========================================================
// AI:
// Ai is based on an action list which contains the current
// action (FIFO). Actions will run the appropriate Lua code.
// =========================================================
typedef enum { ACT_ATTACK, ACT_TRAVEL, ACT_BRAKE } action_type;
// Actions.
struct Action {
struct Action* next;
action_type type;
void* target;
};
typedef struct Action Action;
// Primary pilot structure. // Primary pilot structure.
struct Pilot { struct Pilot {
unsigned int id; // Pilots id. unsigned int id; // Pilots id.
@ -38,7 +24,7 @@ struct Pilot {
// AI. // AI.
void (*think)(struct Pilot*); // Ai thinking for the pilot. void (*think)(struct Pilot*); // Ai thinking for the pilot.
Action* action; // Current action. Task* task; // Current action.
}; };
typedef struct Pilot Pilot; typedef struct Pilot Pilot;