[Add] Integer system generation. :/

This commit is contained in:
Rtch90 2017-12-23 01:34:59 +00:00
parent 405b42d4b9
commit 62c2021eae
10 changed files with 182 additions and 139 deletions

View File

@ -1,12 +1,14 @@
#pragma once
#include <SDL_stdinc.h>
/* 48.16, with bad overflowing mul & div. */
class fixed {
public:
enum { FRAC = 16 };
fixed(void) : v(0) {}
fixed(int raw) : v(raw) {}
fixed(int num, int denom) : v(((Sint64)num<<FRAC) / (Sint64)denom) {}
fixed(Sint64 raw) : v(raw) {}
fixed(Sint64 num, Sint64 denom) : v((num<<FRAC) / denom) {}
friend fixed operator+(const fixed a, const int b) { return a+fixed(b<<FRAC); }
friend fixed operator-(const fixed a, const int b) { return a-fixed(b<<FRAC); }
@ -29,6 +31,9 @@ public:
friend bool operator<(const fixed a, const int b) { return a < fixed(b<<FRAC); }
friend bool operator<(const int a, const fixed b) { return b < fixed(a<<FRAC); }
friend fixed operator>>(const fixed a, const int b) { return fixed(a.v >> b); }
friend fixed operator<<(const fixed a, const int b) { return fixed(a.v << b); }
fixed &operator*=(const fixed a) { (*this) = (*this)*a; return (*this); }
fixed &operator*=(const int a) { (*this) = (*this)*a; return (*this); }
fixed &operator/=(const fixed a) { (*this) = (*this)/a; return (*this); }
@ -38,19 +43,23 @@ public:
fixed &operator-=(const fixed a) { (*this) = (*this)-a; return (*this); }
fixed &operator-=(const int a) { (*this) = (*this)-a; return (*this); }
fixed &operator>>=(const int a) { v >>= a; return (*this); }
fixed &operator<<=(const int a) { v <<= a; return (*this); }
friend fixed operator+(const fixed a, const fixed b) { return fixed(a.v+b.v); }
friend fixed operator-(const fixed a, const fixed b) { return fixed(a.v-b.v); }
friend fixed operator*(const fixed a, const fixed b) { return fixed(((Sint64)a.v*(Sint64)b.v)>>FRAC); }
friend fixed operator/(const fixed a, const fixed b) { return fixed(((Sint64)a.v<<FRAC)/(Sint64)b.v); }
friend fixed operator*(const fixed a, const fixed b) { return fixed((a.v*b.v)>>FRAC); }
friend fixed operator/(const fixed a, const fixed b) { return fixed((a.v<<FRAC)/b.v); }
friend bool operator==(const fixed a, const fixed b) { return a.v == b.v; }
friend bool operator>(const fixed a, const fixed b) { return a.v > b.v; }
friend bool operator<(const fixed a, const fixed b) { return a.v < b.v; }
friend bool operator>=(const fixed a, const fixed b) { return a.v >= b.v; }
friend bool operator<=(const fixed a, const fixed b) { return a.v <= b.v; }
operator float(void) { return v/(float)(1<<FRAC); }
operator double(void) { return v/(double)(1<<FRAC); }
private:
int v;
/* Implicit operator float() is bad. */
float ToFloat(void) const { return v/(float)(1<<FRAC); }
double ToDouble(void) const { return v/(double)(1<<FRAC); }
Sint64 v;
};

View File

@ -194,7 +194,7 @@ void L3D::MainLoop(void) {
/* Linked list eh... Put player at planet f. */
const float zpos = EARTH_RADIUS * 7;
Frame* pframe = *(++(++(++(++(Space::rootFrame->m_children.begin())))));
Frame* pframe = *(++(++(++(Space::rootFrame->m_children.begin()))));
player->SetFrame(pframe);
player->SetPosition(vector3d(0, zpos*0.1, zpos));

View File

@ -6,7 +6,7 @@
Planet::Planet(StarSystem::SBody* sbody) : Body() {
pos = vector3d(0, 0, 0);
geom = dCreateSphere(0, sbody->radius);
geom = dCreateSphere(0, sbody->GetRadius());
dGeomSetData(geom, static_cast<Body*>(this));
this->sbody = *sbody;
this->sbody.children.clear();
@ -722,7 +722,7 @@ void Planet::DrawGasGiant(void) {
void Planet::Render(const Frame* a_camFrame) {
glPushMatrix();
double rad = sbody.radius;
double rad = sbody.GetRadius();
vector3d fpos = GetPositionRelTo(a_camFrame);
double apparent_size = rad / fpos.Length();

View File

@ -10,7 +10,7 @@ public:
virtual void SetPosition(vector3d p);
virtual vector3d GetPosition(void);
void SetRadius(double radius);
virtual double GetRadius(void) const { return sbody.radius; }
virtual double GetRadius(void) const { return sbody.GetRadius(); }
virtual void Render(const Frame* camFrame);
virtual void SetFrame(Frame* f);
virtual bool OnCollision(Body* b, Uint32 flags) { return true; }

View File

@ -44,12 +44,10 @@ void Space::Clear(void) {
void Space::GenBody(StarSystem* system, StarSystem::SBody* sbody, Frame* f) {
Body* b;
if(sbody->supertype == StarSystem::SUPERTYPE_STAR) {
Star* star = new Star(sbody->type);
star->SetRadius(sbody->radius);
Star* star = new Star(sbody);
b = star;
} else {
Planet* planet = new Planet(sbody);
//planet->SetRadius(sbody->radius);
b = planet;
}
b->SetLabel(sbody->name.c_str());
@ -60,7 +58,7 @@ void Space::GenBody(StarSystem* system, StarSystem::SBody* sbody, Frame* f) {
myframe = new Frame(f, sbody->name.c_str());
vector3d pos = sbody->orbit.CartesianPosAtTime(0);
myframe->SetPosition(pos);
myframe->SetRadius(10*sbody->radius);
myframe->SetRadius(10*sbody->GetRadius());
b->SetFrame(myframe);
} else {
b->SetFrame(f);

View File

@ -2,9 +2,9 @@
#include "star.h"
#include "l3d.h"
Star::Star(StarSystem::BodyType type): Body() {
this->type = type;
radius = 6378135.0;
Star::Star(StarSystem::SBody* sbody): Body() {
this->type = sbody->type;
radius = sbody->GetRadius();
pos = vector3d(0,0,0);
}

View File

@ -6,11 +6,10 @@ class Frame;
class Star: public Body {
public:
Star(StarSystem::BodyType type);
Star(StarSystem::SBody* sbody);
virtual ~Star(void) { };
virtual void SetPosition(vector3d p);
virtual vector3d GetPosition(void);
void SetRadius(double radius) { this->radius = radius; }
virtual double GetRadius(void) const { return radius; }
virtual void Render(const Frame* camFrame);

View File

@ -16,105 +16,105 @@ float StarSystem::starColors[7][3] = {
};
static const struct SBodySubTypeInfo {
float mass;
float radius; /* Sol radii for stars, earth radii for planets. */
int mass; /* % sol for stars, unused for planets. */
int radius; /* % Sol radii for stars, % earth radii for planets. */
const char *description;
const char *icon;
float tempMin, tempMax;
int tempMin, tempMax;
} bodyTypeInfo[StarSystem::TYPE_MAX] = {
{
0.4, 0.5, "Type 'M' red star",
40, 50, "Type 'M' red star",
"icons/object_star_m.png",
2000, 3500
},
{
0.8, 0.9, "Type 'K' orange star",
80, 90, "Type 'K' orange star",
"icons/object_star_k.png",
3500, 5000
},
{
1.1, 1.1, "Type 'G' yellow star",
110, 110, "Type 'G' yellow star",
"icons/object_star_g.png",
5000, 6000
},
{
1.7, 1.4, "Type 'F' white star",
170, 140, "Type 'F' white star",
"icons/object_star_f.png",
6000, 7500
},
{
3.1, 2.1, "Type 'A' hot white star",
310, 210, "Type 'A' hot white star",
"icons/object_star_a.png",
7500, 10000
},
{
18.0, 7.0, "Bright type 'B' blue star",
1800, 700, "Bright type 'B' blue star",
"icons/object_star_b.png",
10000, 30000
},
{
64.0, 16.0, "Hot, massive type 'O' blue star",
6400, 1600, "Hot, massive type 'O' blue star",
"icons/object_star_o.png",
30000, 60000
},
{
0, 0, "Brown dwarf sub-stellar object",
0, 30, "Brown dwarf sub-stellar object",
"icons/object_brown_dwarf.png"
},
{
0, 3.9, "Small gas giant",
0, 390, "Small gas giant",
"icons/object_planet_small_gas_giant.png"
},
{
0, 9.5, "Medium gas giant",
0, 950, "Medium gas giant",
"icons/object_planet_medium_gas_giant.png"
},
{
0, 11.1, "Large gas giant",
0, 1110, "Large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
0, 15.0, "Very large gas giant",
0, 1500, "Very large gas giant",
"icons/object_planet_large_gas_giant.png"
},
{
0, 0.26, "Small, rocky dwarf planet",
0, 26, "Small, rocky dwarf planet",
"icons/object_planet_dwarf.png"
},
{
0, 0.52, "Small, rocky planet with a thin atmosphere",
0, 52, "Small, rocky planet with a thin atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with liquid water and a nitrogen atmosphere",
0, 100, "Rocky planet with liquid water and a nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with a carbon dioxide atmosphere",
0, 100, "Rocky planet with a carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with a methane atmosphere",
0, 100, "Rocky planet with a methane atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with running water and a thick nitrogen atmosphere",
0, 100, "Rocky planet with running water and a thick nitrogen atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with a thick carbon dioxide atmosphere",
0, 100, "Rocky planet with a thick carbon dioxide atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Rocky planet with a thick methane atmosphere",
0, 100, "Rocky planet with a thick methane atmosphere",
"icons/object_planet_small.png"
},
{
0, 1.0, "Highly volcanic world",
0, 100, "Highly volcanic world",
"icons/object_planet_small.png"
},
{
0, 1.0, "World with indigenous life and an oxygen atmosphere",
0, 100, "World with indigenous life and an oxygen atmosphere",
"icons/object_planet_life.png"
}
};
@ -127,12 +127,29 @@ const char* StarSystem::SBody::GetIcon(void) {
return bodyTypeInfo[type].icon;
}
static const double boltzman_const = 5.6704e-8;
static inline Sint64 isqrt(Sint64 a) {
Sint64 ret = 0;
Sint64 s;
Sint64 ret_sq = -a-1;
for(s = 62; s >= 0; s-=2) {
Sint64 b;
ret += ret;
b = ret_sq + ((2*ret+1)<<s);
if(b<0) {
ret_sq = b;
ret++;
}
}
return ret;
}
/* These are the nice floating point surface temp calculating stuff. */
static const double boltzman_const = 5.6704e-8;
static double calcEnergyPerUnitAreaAtDist(double star_radius, double star_temp,
double object_dist) {
const double total_solar_emission = boltzman_const * pow(star_temp, 4) *
const double total_solar_emission = boltzman_const *
star_temp*star_temp*star_temp*star_temp*
4*M_PI*star_radius*star_radius;
return total_solar_emission / (4*M_PI*object_dist*object_dist);
@ -149,6 +166,21 @@ static double calcSurfaceTemp(double star_radius, double star_temp,
return surface_temp;
}
/* Instead we use these ugly overflow-prone things. */
static fixed calcEnergyPerUnitAreaAtDist(fixed star_radius, int star_temp, fixed object_dist) {
fixed temp = star_temp * fixed(1, 10000);
const fixed total_solar_emission =
temp*temp*temp*temp*star_radius*star_radius;
return fixed(1744665451, 100000)*(total_solar_emission / (object_dist*object_dist));
}
static int calcSurfaceTemp(fixed star_radius, int star_temp, fixed object_dist, fixed albedo, fixed greenhouse) {
const fixed energy_per_meter2 = calcEnergyPerUnitAreaAtDist(star_radius, star_temp, object_dist);
const fixed surface_temp_pow4 = energy_per_meter2*(1-albedo)/(1-greenhouse);
return isqrt(isqrt((surface_temp_pow4.v>>16)*4409673));
}
void StarSystem::Orbit::KeplerPosAtTime(double t, double* dist, double* ang) {
double e = eccentricity;
double a = semiMajorAxis;
@ -214,15 +246,17 @@ void StarSystem::SBody::EliminateBadChildren(void) {
if((*j) == (*i)) continue;
/* Don't eat anything bigger than self. */
if((*j)->mass > (*i)->mass) continue;
double i_min = (*i)->radMin;
double i_max = (*i)->radMax;
double j_min = (*j)->radMin;
double j_max = (*j)->radMax;
fixed i_min = (*i)->radMin;
fixed i_max = (*i)->radMax;
fixed j_min = (*j)->radMin;
fixed j_max = (*j)->radMax;
fixed i_avg = (i_min+i_max)>>1;
fixed j_avg = (j_min+j_max)>>1;
bool eat = false;
if((*i)->orbit.semiMajorAxis > (*j)->orbit.semiMajorAxis) {
if(i_min < j_max*1.2) eat = true;
if(i_avg > j_avg) {
if(i_min < j_max*fixed(12, 10)) eat = true;
} else {
if(i_max > j_min*0.8) eat = true;
if(i_max > j_min*fixed(8, 10)) eat = true;
}
if(eat) {
(*i)->mass += (*j)->mass;
@ -260,11 +294,11 @@ StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
StarSystem::BodyType type = s.m_systems[system_idx].primaryStarClass;
primary->type = type;
primary->parent = NULL;
primary->radius = SOL_RADIUS*bodyTypeInfo[type].radius;
primary->mass = SOL_MASS*bodyTypeInfo[type].mass;
primary->radius = fixed(bodyTypeInfo[type].radius, 100);
primary->mass = fixed(bodyTypeInfo[type].mass, 100);
primary->supertype = SUPERTYPE_STAR;
primary->averageTemp = rand.Int32((int)bodyTypeInfo[type].tempMin,
(int)bodyTypeInfo[type].tempMax);
primary->averageTemp = rand.Int32(bodyTypeInfo[type].tempMin,
bodyTypeInfo[type].tempMax);
rootBody = primary;
/* FIXME: Not good if the enum is tampered with... */
@ -273,7 +307,7 @@ StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
std::vector<int>* disc = AccreteDisc(disc_size, 10, rand.Int32(10,400), rand);
for(unsigned int i = 0; i < disc->size(); i++) {
float mass = (*disc)[i]/65536.0;
fixed mass = fixed((*disc)[i]);
if(mass == 0) continue;
SBody* planet = new SBody;
@ -283,17 +317,20 @@ StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
planet->temp = 0;
planet->parent = primary;
//planet->radius = EARTH_RADIUS*bodyTypeInfo[type].radius;
planet->mass = mass * EARTH_MASS;
planet->orbit.eccentricity = rand.NDouble(3);
planet->orbit.semiMajorAxis = ((i+1)*0.1)*AU;
planet->orbit.period = calc_orbital_period(planet->orbit.semiMajorAxis, primary->mass);
planet->mass = mass;
fixed ecc = rand.NFixed(3);
fixed semiMajorAxis = fixed(i+1, 10); /* In AUs. */
planet->orbit.eccentricity = ecc.ToDouble();
planet->orbit.semiMajorAxis = semiMajorAxis.ToDouble() * AU;
planet->orbit.period = calc_orbital_period(planet->orbit.semiMajorAxis, SOL_MASS*primary->mass.ToDouble());
planet->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.NDouble(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand.Double(M_PI));
primary->children.push_back(planet);
/* Perihelion and Aphelion. */
planet->radMin = planet->orbit.semiMajorAxis - planet->orbit.eccentricity*planet->orbit.semiMajorAxis;
planet->radMax = 2*planet->orbit.semiMajorAxis - planet->radMin;
/* Perihelion and Aphelion. ( In AUs ) */
planet->radMin = semiMajorAxis - ecc*semiMajorAxis;
planet->radMax = 2*semiMajorAxis - planet->radMin;
}
delete disc;
@ -309,46 +346,40 @@ StarSystem::StarSystem(int sector_x, int sector_y, int system_idx) {
buf[1] = 'b'+(idx++);
buf[2] = 0;
(*i)->name = primary->name+buf;
double d = 0.5*((*i)->radMin + (*i)->radMax);
fixed d = ((*i)->radMin + (*i)->radMax) >> 1;
(*i)->PickPlanetType(primary, d, rand, true);
#ifdef DEBUG_DUMP
printf("%s: mass %f, semi-major axis %fAU, ecc %f\n", (*i)->name.c_str(),
(*i)->mass/EARTH_MASS, (*i)->orbit.semiMajorAxis/AU, (*i)->orbit.eccentricity);
printf("%s: mass %f, semi-major axis %fAU, ecc %f\n",
(*i)->name.c_str(), (*i)->mass.ToDouble(), (*i)->orbit.semiMajorAxis/AU,
(*i)->orbit.eccentricity);
#endif
}
}
void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand& rand, bool genMoons) {
float emass = mass / EARTH_MASS;
/* Surface temperature. */
/* https::/en.wikipedia.org/wiki/Black_body - Thanks again wiki. */
const double d = distToPrimary;
double albedo = rand.Double(0.5);
double globalwarming = rand.Double(0.9);
void StarSystem::SBody::PickPlanetType(SBody* star, const fixed distToPrimary, MTRand& rand, bool genMoons) {
fixed albedo = rand.Fixed() * fixed(1,2);
fixed globalwarming = rand.Fixed() * fixed(9,10);
/* Light planets have like.. no atmosphere. */
if(emass < 1) globalwarming *= emass;
if(mass < 1) globalwarming *= mass;
/* Big planets get high global warming owing to it's thick atmos. */
if(emass > 3) globalwarming *= (emass-2.0f);
globalwarming = CLAMP(globalwarming, 0, 0.95);
//printf("====\ndist %f, mass %f, albedo %f, globalwarming %f\n", d, emass, albedo, globalwarming);
if(mass > 3) globalwarming *= (mass - 2);
globalwarming = CLAMP(globalwarming, fixed(0), fixed(95, 100));
/* This is all of course a total joke and un-physical.. Sorry. */
double bbody_temp;
int bbody_temp;
bool fiddle = false;
for(int i = 0; i < 10; i++) {
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, d, albedo, globalwarming);
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, distToPrimary, albedo, globalwarming);
//printf(temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
/* Extreme high temperature and low mass causes atmosphere loss. */
#define ATMOS_LOSS_MASS_CUTOFF 2.0
#define ATMOS_LOSS_MASS_CUTOFF 2
#define ATMOS_TEMP_CUTOFF 400
#define FREEZE_TEMP_CUTOFF 220
if((bbody_temp > ATMOS_TEMP_CUTOFF) &&
(emass < ATMOS_LOSS_MASS_CUTOFF)) {
(mass < ATMOS_LOSS_MASS_CUTOFF)) {
//printf("atmos loss\n");
globalwarming = globalwarming * (emass/ATMOS_LOSS_MASS_CUTOFF);
globalwarming = globalwarming * (mass/ATMOS_LOSS_MASS_CUTOFF);
fiddle = true;
}
if(!fiddle) break;
@ -357,38 +388,38 @@ void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand
/* This is bs. Should decide atmosphere composition and then freeze out
* components of it in the previous loop.
*/
if((bbody_temp < FREEZE_TEMP_CUTOFF) && (emass < 5)) {
if((bbody_temp < FREEZE_TEMP_CUTOFF) && (mass < 5)) {
globalwarming *= 0.2;
albedo = rand.Double(0.05) + 0.9;
}
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, d, albedo, globalwarming);
bbody_temp = calcSurfaceTemp(star->radius, star->averageTemp, distToPrimary, albedo, globalwarming);
// printf("= temp %f, albedo %f, globalwarming %f\n", bbody_temp, albedo, globalwarming);
averageTemp = bbody_temp;
if(emass > 317.8*13) {
if(mass > 317*13) {
/* More than 13 jupiter masses can fuse deuterium - is a brown dwarf. */
type = TYPE_BROWN_DWARF;
/* TODO Should prevent mass exceeding 65 jupiter masses or so,
* when it becomes a star.
*/
} else if(emass > 300) {
} else if(mass > 300) {
type = TYPE_PLANET_LARGE_GAS_GIANT;
} else if(emass > 90) {
} else if(mass > 90) {
type = TYPE_PLANET_MEDIUM_GAS_GIANT;
} else if(emass > 6) {
} else if(mass > 6) {
type = TYPE_PLANET_SMALL_GAS_GIANT;
} else {
/* Terrestrial planets. */
if(emass < 0.02) {
if(mass < fixed(2,100)) {
type = TYPE_PLANET_DWARF;
} else if((emass < 0.2) && (globalwarming < 0.05)) {
} else if((mass < fixed(2,10)) && (globalwarming < fixed(5,100))) {
type = TYPE_PLANET_SMALL;
} else if(emass < 3) {
} else if(mass < 3) {
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
/* Try for life.. */
double minTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMax, albedo, globalwarming);
double maxTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMin, albedo, globalwarming);
int minTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMax, albedo, globalwarming);
int maxTemp = calcSurfaceTemp(star->radius, star->averageTemp, radMin, albedo, globalwarming);
if((minTemp > CELSIUS-10) && (minTemp < CELSIUS+70) &&
(maxTemp > CELSIUS-10) && (maxTemp < CELSIUS+70)) {
type = TYPE_PLANET_INDIGENOUS_LIFE;
@ -399,7 +430,7 @@ void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand
if(rand.Int32(0,1)) type = TYPE_PLANET_CO2;
else type = TYPE_PLANET_METHANE;
}
} else { /* 3 < emass < 6 */
} else { /* 3 < mass < 6 */
if((averageTemp > CELSIUS-10) && (averageTemp < CELSIUS+70)) {
type = TYPE_PLANET_WATER_THICK_ATMOS;
} else {
@ -408,14 +439,14 @@ void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand
}
}
/* Kinda crappy. */
if((emass > 0.8) && (!rand.Int32(0,15))) type = TYPE_PLANET_HIGHLY_VOLCANIC;
if((mass > fixed(8,10)) && (!rand.Int32(0,15))) type = TYPE_PLANET_HIGHLY_VOLCANIC;
}
radius = EARTH_RADIUS*bodyTypeInfo[type].radius;
radius = fixed(bodyTypeInfo[type].radius, 100);
/* Generate moons. */
if((genMoons) && (emass > 0.5)) {
std::vector<int>* disc = AccreteDisc(2*sqrt(emass), 10, rand.Int32(1, 10), rand);
if((genMoons) && (mass > fixed(1,2))) {
std::vector<int>* disc = AccreteDisc(isqrt(mass.v>>12), 10, rand.Int32(1, 10), rand);
for(unsigned int i = 0; i < disc->size(); i++) {
float mass = (*disc)[i]/65536.0;
fixed mass = fixed((*disc)[i]);
if(mass == 0) continue;
SBody* moon = new SBody;
@ -425,19 +456,18 @@ void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand
moon->temp = 0;
moon->parent = this;
//moon->radius = EARTH_RADIUS*bodyTypeInfo[type].radius;
moon->mass = mass * EARTH_MASS;
moon->orbit.eccentricity = rand.NDouble(3);
moon->orbit.semiMajorAxis = ((i+1)*0.001)*AU;
moon->orbit.period = calc_orbital_period(moon->orbit.semiMajorAxis, this->mass);
moon->mass = mass;
fixed ecc = rand.NFixed(3);
fixed semiMajorAxis = fixed(i+1, 2000);
moon->orbit.eccentricity = ecc.ToDouble();
moon->orbit.semiMajorAxis = semiMajorAxis.ToDouble()*AU;
moon->orbit.period = calc_orbital_period(moon->orbit.semiMajorAxis, this->mass.ToDouble() * EARTH_MASS);
moon->orbit.rotMatrix = matrix4x4d::RotateYMatrix(rand.NDouble(5)*M_PI/2.0) *
matrix4x4d::RotateZMatrix(rand.NDouble(M_PI));
this->children.push_back(moon);
double ang;
moon->orbit.KeplerPosAtTime(0, &moon->radMin, &ang);
moon->orbit.KeplerPosAtTime(moon->orbit.period*0.5, &moon->radMax, &ang);
//printf("%f,%f\n", min/AU, max/AU);
//printf("%f year orbital period\n", moon->orbit.period / (60*60*24*365));
moon->radMin = semiMajorAxis - ecc*semiMajorAxis;
moon->radMax = 2*semiMajorAxis - moon->radMin;
}
delete disc;
@ -451,7 +481,7 @@ void StarSystem::SBody::PickPlanetType(SBody* star, double distToPrimary, MTRand
buf[0] = '1'+(idx++);
buf[1] = 0;
(*i)->name = name+buf;
(*i)->PickPlanetType(star, d, rand, false);
(*i)->PickPlanetType(star, distToPrimary, rand, false);
}
}
}

View File

@ -17,7 +17,7 @@ struct systemloc_t {
int secX, secY, sysIdx;
};
/* All masses are in Kg, all lengths in meters. */
/* Doubles: All masses are in Kg, all lengths in meters. */
class StarSystem {
public:
StarSystem(int sector_x, int sector_y, int system_idx);
@ -77,21 +77,27 @@ public:
struct SBody {
~SBody(void);
void EliminateBadChildren(void); /* :D */
void PickPlanetType(SBody*, double distToPrimary, MTRand& drand, bool genMoons);
void PickPlanetType(SBody*, fixed distToPrimary, MTRand& drand, bool genMoons);
SBody* parent;
std::vector<SBody*> children;
const char* GetAstroDescription(void);
const char* GetIcon(void);
double GetRadius(void) const {
if(supertype == SUPERTYPE_STAR)
return radius.ToDouble() * SOL_RADIUS;
else
return radius.ToDouble() * EARTH_RADIUS;
}
int temp;
Orbit orbit;
int seed; /* planet.cpp can use to generate terrain. */
std::string name;
double radius;
double mass;
double radMin, radMax;
double averageTemp;
fixed radius;
fixed mass; /* Earth masses if planet, solar masses if star. */
fixed radMin, radMax; /* In AU's. */
int averageTemp;
BodySuperType supertype;
BodyType type;

View File

@ -16,11 +16,12 @@ void SystemInfoView::OnBodySelected(StarSystem::SBody* b) {
char buf[1024];
snprintf(buf, sizeof(buf), "%s: %s\n"
"Mass %.2f Earth masses\n",
b->name.c_str(), b->GetAstroDescription(), b->mass/EARTH_MASS);
"Mass %.2f %s masses\n",
b->name.c_str(), b->GetAstroDescription(), b->mass.ToDouble(),
(b->supertype == StarSystem::SUPERTYPE_STAR ? "Solar" : "Earth"));
desc += buf;
snprintf(buf, sizeof(buf), "Surface temperature %.0f C\n", b->averageTemp-273.15);
snprintf(buf, sizeof(buf), "Surface temperature %d C\n", b->averageTemp-273);
desc += buf;
/*
@ -39,9 +40,9 @@ void SystemInfoView::OnBodySelected(StarSystem::SBody* b) {
snprintf(buf, sizeof(buf), "Orbital period %.1f days\n", b->orbit.period/(60*60*24));
}
desc += buf;
snprintf(buf, sizeof(buf), "Perihelion distance %.2f AU\n", b->radMin / AU);
snprintf(buf, sizeof(buf), "Perihelion distance %.2f AU\n", b->radMin.ToDouble());
desc += buf;
snprintf(buf, sizeof(buf), "Aphelion distance %.2f AU\n", b->radMax / AU);
snprintf(buf, sizeof(buf), "Aphelion distance %.2f AU\n", b->radMax.ToDouble());
desc += buf;
snprintf(buf, sizeof(buf), "Eccentricity %.2f\n", b->orbit.eccentricity);
desc += buf;